171 research outputs found

    Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies

    Get PDF
    Cancer became recently the leading cause of death in industrialized countries. Even though standard treatments achieve significant effects in growth inhibition and tumor elimination, they cause severe side effects as most of the applied drugs exhibit only minor selectivity for the malignant tissue. Hence, specific addressing of tumor cells without affecting healthy tissue is currently a major desire in cancer therapy. Cell surface receptors, which bind peptides are frequently overexpressed on cancer cells and can therefore be considered as promising targets for selective tumor therapy. In this review, the benefits of peptides as tumor homing agents are presented and an overview of the most commonly addressed peptide receptors is given. A special focus was set on the bombesin receptor family and the neuropeptide Y receptor family. In the second part, the specific requirements of peptide-drug conjugates (PDC) and intelligent linker structures as an essential component of PDC are outlined. Furthermore, different drug cargos are presented including classical and recent toxic agents as well as radionuclides for diagnostic and therapeutic approaches. In the last part, boron neutron capture therapy as advanced targeted cancer therapy is introduced and past and recent developments are reviewed

    Strategies for Site‐Specific Labeling of Receptor Proteins on the Surfaces of Living Cells by Using Genetically Encoded Peptide Tags

    Get PDF
    Fluorescence microscopy imaging enables receptor proteins to be investigated within their biological context. A key challenge is to site-specifically incorporate reporter moieties into proteins without interfering with biological functions or cellular networks. Small peptide tags offer the opportunity to combine inducible labeling with small tag sizes that avoid receptor perturbation. Herein, we review the current state of live-cell labeling of peptide-tagged cell-surface proteins. Considering their importance as targets in medicinal chemistry, we focus on membrane receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We discuss peptide tags that i) are subject to enzyme-mediated modification reactions, ii) guide the complementation of reporter proteins, iii) form coiled-coil complexes, and iv) interact with metal complexes. Given our own contributions in the field, we place emphasis on peptide-templated labeling chemistry.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Leipzig School of Natural SciencesPeer Reviewe

    Targeting of peptide-binding receptors on cancer cells with peptide-drug conjugates

    Get PDF
    Specifically addressing cell surface molecules on cancer cells facilitates targeted cancer therapies that offer the potential to selectively destroy malignant cells, while sparing healthy tissue. Thus, undesired side-effects in tumor patients are highly reduced. Peptide-binding receptors are frequently overexpressed on cancer cells and therefore promising targets for selective tumor therapy. In this review, peptide-binding receptors for anti-cancer drug delivery are summarized with a focus on peptide ligands as delivery agents. In the first part, some of the most studied peptide-binding receptors are presented, and the ghrelin receptor and the Y1 receptor are introduced as more recent targets for cancer therapy. Furthermore, nonpeptidic small molecules for receptor targeting on cancer cells are outlined. In the second part, peptide conjugates for the delivery of therapeutic cargos in cancer therapy are described. The essential properties of receptor-targeting peptides are specified, and recent developments in the fields of classical peptide-drug conjugates with toxic agents, radiolabeled peptides for radionuclide therapy, and boronated peptides for boron neutron capture therapy are presented

    The Structural Basis of Peptide Binding at Class A G Protein-Coupled Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) represent the largest membrane protein family and a significant target class for therapeutics. Receptors from GPCRs’ largest class, class A, influence virtually every aspect of human physiology. About 45% of the members of this family endogenously bind flexible peptides or peptides segments within larger protein ligands. While many of these peptides have been structurally characterized in their solution state, the few studies of peptides in their receptor-bound state suggest that these peptides interact with a shared set of residues and undergo significant conformational changes. For the purpose of understanding binding dynamics and the development of peptidomimetic drug compounds, further studies should investigate the peptide ligands that are complexed to their cognate receptor

    Cell-Free Expression and Photo-Crosslinking of the Human Neuropeptide Y2 Receptor

    Get PDF
    G protein-coupled receptors (GPCRs) represent a large family of different proteins, which are involved in physiological processes throughout the entire body. Furthermore, they represent important drug targets. For rational drug design, it is important to get further insights into the binding mode of endogenous ligands as well as of therapeutic agents at the respective target receptors. However, structural investigations usually require homogenous, solubilized and functional receptors, which is still challenging. Cell-free expression methods have emerged in the last years and many different proteins are successfully expressed, including hydrophobic membrane proteins like GPCRs. In this work, an Escherichia coli based cell-free expression system was used to express the neuropeptide Y2 receptor (Y2R) for structural investigations. This GPCR was expressed in two different variants, a C-terminal enhanced green fluorescent fusion protein and a cysteine deficient variant. In order to obtain soluble receptors, the expression was performed in the presence of mild detergents, either Brij-35 or Brij-58, which led to high amounts of soluble receptor. Furthermore, the influence of temperature, pH value and additives on protein expression and solubilization was tested. For functional and structural investigations, the receptors were expressed at 37°C, pH 7.4 in the presence of 1 mM oxidized and 5 mM reduced glutathione. The expressed receptors were purified by ligand affinity chromatography and functionality of Y2R_cysteine_deficient was verified by a homogenous binding assay. Finally, photo-crosslinking studies were performed between cell-free expressed Y2R_cysteine_deficient and a neuropeptide Y (NPY) analog bearing the photoactive, unnatural amino acid p-benzoyl-phenylalanine at position 27 and biotin at position 22 for purification. After enzymatic digestion, fragments of crosslinked receptor were identified by mass spectrometry. Our findings demonstrate that, in contrast to Y1R, NPY position 27 remains flexible when bound to Y2R. These results are in agreement with the suggested binding mode of NPY at Y2R

    Обеспечение пожаровзрывобезопасности и защита от чрезвычайных ситуаций особо опасных производств на территории Бурятии

    Get PDF
    Проведён аналитический обзор информации, знакомство с правовыми нормами и требованиями к пожарной безопасности на особо опасном объекте, велась разработка мероприятий по обеспечению пожарной безопасности на объекте, аналитический обзор современных методов пожаротушения на объекте.An analytical review of information, familiarity with the legal norms and requirements for fire safety at a particularly hazardous facility, the development of measures to ensure fire safety at the site, an analytical review of modern firefighting methods at the site
    corecore