582 research outputs found

    Discontinuous Transition from a Real Bound State to Virtual Bound State in a Mixed-Valence State of SmS

    Full text link
    Golden SmS is a paramagnetic, mixed-valence system with a pseudogap. With increasing pressure across a critical pressure Pc, the system undergoes a discontinuous transition into a metallic, anti-ferromagnetically ordered state. By using a combination of thermodynamic, transport, and magnetic measurements, we show that the pseudogap results from the formation of a local bound state with spin singlet. We further argue that the transition Pc is regarded as a transition from an insulating electron-hole gas to a Kondo metal, i.e., from a spatially bound state to a Kondo virtually bound state between 4f and conduction electrons.Comment: 5 pages, 5 figure

    Different spatial distribution of inflammatory cells in the tumor microenvironment of ABC and GBC subgroups of diffuse large B cell lymphoma

    Get PDF
    Diffuse Large B-Cell Lymphoma (DLBCL) presents a high clinical and biological heterogeneity, and the tumor microenvironment chracteristics are important in its progression. The aim of this study was to evaluate tumor T, B cells, macrophages and mast cells distribution in GBC and ABC DLBCL subgroups through a set of morphometric parameters allowing to provide a quantitative evaluation of the morphological features of the spatial patterns generated by these inflammatory cells. Histological ABC and GCB samples were immunostained for CD4, CD8, CD68, CD 163, and tryptase in order to determine both percentage and position of positive cells in the tissue characterizing their spatial distribution. The results evidenced that cell patterns generated by CD4-, CD8-, CD68-, CD163- and tryptase-positive cell profiles exhibited a significantly higher uniformity index in ABC than in GCB subgroup. The positive-cell distributions appeared clustered in tissues from GCB, while in tissues from ABC such a feature was lower or absent. The combinations of spatial statistics-derived parameters can lead to better predictions of tumor cell infiltration than any classical morphometric method providing a more accurate description of the functional status of the tumor, useful for patient prognosis

    Disposable paper-on-CMOS platform for real-time simultaneous detection of metabolites

    Get PDF
    Objective: Early stage diagnosis of sepsis without overburdening health services is essential to improving patient outcomes. Methods: A fast and simple-to-use platform that combines an integrated circuit with paper microfluidics for simultaneous detection of multiple-metabolites appropriate for diagnostics was presented. Paper based sensors are a primary candidate for widespread deployment of diagnostic or test devices. However, the majority of devices today use a simple paper strip to detect a single marker using the reflectance of light. However, for many diseases such as sepsis, one biomarker is not sufficient to make a unique diagnosis. In this work multiple measurements are made on patterned paper simultaneously. Using laser ablation to fabricate microfluidic channels on paper provides a flexible and direct approach for mass manufacture of disposable paper strips. A reusable photodiode array on a complementary metal oxide semiconductor chip is used as the transducer. Results: The system measures changes in optical absorbance in the paper to achieve a cost-effective and easily implemented system that is capable of multiple simultaneous assays. Potential sepsis metabolite biomarkers glucose and lactate have been studied and quantified with the platform, achieving sensitivity within the physiological range in human serum. Conclusion: We have detailed a disposable paper-based CMOS photodiode sensor platform for real-time simultaneous detection of metabolites for diseases such as sepsis. Significance: A combination of a low-cost paper strip with microfluidic channels and a sensitive CMOS photodiode sensor array makes our platform a robust portable and inexpensive biosensing device for multiple diagnostic tests in many different applications

    Dp71 expression in human glioblastoma

    Get PDF
    Background: Dp71 is the most abundant dystrophin (DMD) gene product in the nervous system. Mutation in the Dp71 coding region is associated with cognitive disturbances in Duchenne muscular dystrophy (DMD) patients, but the function of dystrophin Dp71 in tumor progression remains to be established. This study investigated Dp71 expression in glioblastoma, the most common and aggressive primary tumor of the central nervous system (CNS). Methods: Dp71 expression was analyzed by immunofluorescence, immunohistochemistry, RT-PCR, and immunoblotting in glioblastoma cell lines and cells isolated from human glioblastoma multiforme (GBM) bioptic specimens. Results: Dp71 isoform was expressed in normal human astrocytes (NHA) cell lines and decreased in glioblastoma cell lines and cells isolated from human glioblastoma multiforme bioptic specimens. Moreover, Dp71 was localized in the nucleus in normal cells, while it was localized into the cytoplasm of glioblastoma cells organized in clusters. We have shown, by double labeling, that Dp71 colocalizes with lamin B in normal astrocytes cells, confirming the roles of Dp71 and lamin B in maintaining nuclear architecture. Finally, we demonstrated that decreased Dp71 protein in cells isolated from human bioptic specimens was inversely correlated with the Ki-67 tumor proliferative index. Conclusion: A decreased Dp71 expression is associated with cancer proliferation and poor prognosis in glioblastoma

    Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction

    Get PDF
    Modern scientific knowledge of how memory functions are organized in the human brain originated from the case of Henry G. Molaison (H.M.), an epileptic patient whose amnesia ensued unexpectedly following a bilateral surgical ablation of medial temporal lobe structures, including the hippocampus. The neuroanatomical extent of the 1953 operation could not be assessed definitively during H.M.’s life. Here we describe the results of a procedure designed to reconstruct a microscopic anatomical model of the whole brain and conduct detailed 3D measurements in the medial temporal lobe region. This approach, combined with cellular-level imaging of stained histological slices, demonstrates a significant amount of residual hippocampal tissue with distinctive cytoarchitecture. Our study also reveals diffuse pathology in the deep white matter and a small, circumscribed lesion in the left orbitofrontal cortex. The findings constitute new evidence that may help elucidate the consequences of H.M.’s operation in the context of the brain’s overall pathology

    Oral beclometasone dipropionate in the treatment of active ulcerative colitis: a double-blind placebo-controlled study.

    Get PDF
    AIM: To evaluate efficacy and safety of oral beclometasone dipropionate (BDP) when added to 5-ASA in the treatment of patients with active ulcerative colitis. METHODS: In a 4-week, placebo-controlled, double-blind study, patients with extensive or left-sided mild to moderate active ulcerative colitis were randomized to receive oral 5-ASA (3.2 g/day) plus BDP (5 mg/day) or placebo. Clinical, endoscopic and histologic features, and haematochemical parameters were recorded at baseline and at the end of the study

    Prostate cancer biomarkers: a practical review based on different clinical scenarios

    Get PDF
    Traditionally, diagnosis and staging of prostate cancer (PCa) have been based on prostate-specific antigen (PSA) level, digital rectal examination (DRE), and transrectal ultrasound (TRUS) guided prostate biopsy. Biomarkers have been introduced into clinical practice to reduce the overdiagnosis and overtreatment of low-grade PCa and increase the success of personalized therapies for high-grade and high-stage PCa. The purpose of this review was to describe available PCa biomarkers and examine their use in clinical practice. A nonsystematic literature review was performed using PubMed and Scopus to retrieve papers related to PCa biomarkers. In addition, we manually searched websites of major urological associations for PCa guidelines to evaluate available evidence and recommendations on the role of biomarkers and their potential contribution to PCa decision-making. In addition to PSA and its derivates, thirteen blood, urine, and tissue biomarkers are mentioned in various PCa guidelines. Retrospective studies have shown their utility in three main clinical scenarios: (1) deciding whether to perform a biopsy, (2) distinguishing patients who require active treatment from those who can benefit from active surveillance, and (3) defining a subset of high-risk PCa patients who can benefit from additional therapies after RP. Several validated PCa biomarkers have become commercially available in recent years. Guidelines now recommend offering these tests in situations in which the assay result, when considered in combination with routine clinical factors, is likely to affect management. However, the lack of direct comparisons and the unproven benefits, in terms of long-term survival and cost-effectiveness, prevent these biomarkers from being integrated into routine clinical use

    Capsule endoscopy compatible fluorescence imager demonstrated using bowel cancer tumours

    Get PDF
    We demonstrate a proof of concept highly miniaturised fluorescence imager and its application to detecting cancer in resected human colon cancer tissues. Fluorescence imaging modalities have already been successfully implemented in traditional endoscopy. However, the procedure still causes discomfort and requires sedation. Wireless fluorescence capsule endoscopy has the potential to improve diagnostic accuracy with less inconvenience for patients. In this paper we present a 5 mm x 6 mm x 5 mm optical block that is small enough to integrate into a capsule endoscope. The block integrates ultrathin filters for optical isolation and was successfully integrated with a sensitive CMOS SPAD array to detect green fluorescence from Flavin Adenine Dinucleotide (FAD), which is an endogenous fluorophore responsible for autofluorescence in human tissues, and fluorescence from the cancer selective molecular probe ProteoGREENTM-gGlu used to label colorectal cancer cells. In vitro studies were validated using a commercial ModulusTM Microplate reader. The potential use of the device in capsule endoscopy was further validated by imaging healthy and malignant resected human tissues from the colon to detect changes in autofluorescence signal that are crucial for cancer diagnosis

    A 64x64 SPAD array for portable colorimetric sensing, fluorescence and X-ray imaging

    Get PDF
    We present the design and application of a 64x64 pixel SPAD array to portable colorimetric sensing, and fluorescence and x-ray imaging. The device was fabricated on an unmodified 180 nm CMOS process and is based on a square p+/n active junction SPAD geometry suitable for detecting green fluorescence emission. The stand-alone SPAD shows a photodetection probability greater than 60% at 5 V excess bias, with a dark count rate of less than 4 cps/µm2 and sub-ns timing jitter performance. It has a global shutter with an in-pixel 8-bit counter; four 5-bit decoders and two 64-to-1 multiplexer blocks allow the data to be read-out. The array of sensors was able to detect fluorescence from a fluorescein isothiocyanate (FITC) solution down to a concentration of 900 pM with a SNR of 9.8 dB. A colorimetric assay was performed on top of the sensor array with a limit of quantification of 3.1 µM. X-rays images, using energies ranging from 10 kVp to 100 kVp, of a lead grating mask were acquired without using a scintillation crystal
    corecore