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Abstract
Diffuse Large B-Cell Lymphoma (DLBCL) presents a high clinical and biological heterogeneity, and the tumor microenvi-
ronment chracteristics are important in its  progression. The aim of this study was to evaluate tumor T, B cells, macrophages 
and mast cells distribution in GBC and ABC DLBCL subgroups through a set of morphometric parameters allowing to 
provide a quantitative evaluation of the morphological features of the spatial patterns generated by these inflammatory cells.   
Histological ABC and GCB samples were immunostained for CD4, CD8, CD68, CD 163, and tryptase in order to determine 
both percentage and position of positive cells in the tissue characterizing their spatial distribution. The results evidenced that 
cell patterns generated by CD4-, CD8-, CD68-, CD163- and tryptase-positive cell profiles exhibited a significantly higher 
uniformity index in ABC than in GCB subgroup. The positive-cell distributions appeared clustered in tissues from GCB, 
while in tissues from ABC such a feature was lower or absent. The combinations of spatial statistics-derived parameters 
can lead to better predictions of tumor cell infiltration than any classical morphometric method providing a more accurate 
description of the functional status of the tumor, useful for patient prognosis.

Keywords  Diffuse large B cell lymphoma · Fractal dimension · Inflammatory cells · Spatial distribution · Tumor 
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Introduction

Diffuse Large B-Cell Lymphoma (DLBCL), classified by 
the 2008 WHO classification as one of the several types of 
large B-cell lymphomas, is the most common Non-Hodgkin 
Lymphoma (NHL), accounting for about 40% of all cases of 
NHL [1, 2]. DLBCL presents a high clinical and biological 

heterogeneity supported by the notion that most of these 
lymphomas arise from germinal center B-cells at different 
stages of differentiation, in which recurrent genetic altera-
tions contribute to the molecular pathogenesis of the disease 
[3].

Gene expression profiling studies have contributed to 
unravel the complex biological and clinical heterogene-
ity of this disease, leading to the definition of a germi-
nal center (GC) B-like DLBCL (GCB) subgroup and an 
activated B-like DLBCL (ABC subgroup), characterized 
by gene expression signatures such as constitutive activa-
tion of nuclear factor kB (NFkB) in ABC subgroup [4] 
and somatic mutations of polycomb repressor-2 complex 
gene EZH2 in GCB subgroup [5]. Moreover, the GCB sub-
group expresses high levels of BCL6 and responds better 
to conventional chemotherapy, whereas the ABC subgroup 
has lower levels of BCL6 and tends to be refractory to 
chemotherapeutic treatment [6]. Moreover, we have dem-
onstrated, comparing by means of RNA scope technology 
STAT-3 RNA expression in ABC and GBC subgroups, 
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that ABC tissue sample contained a significant higher 
number of STAT-3 positive cells than GBC tissue sam-
ples [7]. STAT-3 is strongly linked to tumor angiogenesis 
and metastasis and is related to poor prognosis in different 
tumors [8].

Analysis of tumor microenvironment is an important 
aspect in the progression of DLBCL. Different cellular 
components of the tumor microenvironment, including 
macrophages and lymphocytes, have been considered 
in DLBCL such to establish correlations encompassing 
prognostic significance, stage-related tumor progression 
and differences in treatment outcome. We have previ-
ously demonstrated a positive correlation between STAT-3 
expression and CD3-, CD8-, CD68- and CD-163 positive 
cells in the ABC and GBC subgroups [9].

The aim of this study is to determine the distribution of 
T and B cells, macrophages and mast cells distribution in 
GBC and ABC subtype DLBCL through a set of morpho-
metric parameters allowing to provide a quantitative evalu-
ation of the morphological features of the spatial patterns 
generated by these inflammatory cells, including size of 
the cell pattern,  shape of the cell pattern and architecture 
of the cell pattern.

Materials and methods

Patients

This retrospective study reviewed data from 30 patients diag-
nosed with DLBCL between 2015 and 2020. Tumors were 
divided into two histological subgroups: one that includes 
15 ABC patients and another that includes 15 GCB patients.

Immunohistochemistry

Paraffin-embedded tissues representatives of the DLBCL 
cases were sectioned at 3 μm. The sections were transferred 
onto poly-l-lysine-coated slides and subjected to deparaffi-
nization and rehydratation. After blocking of endogenous 
peroxidases with a methanol-hydrogen peroxide solution 
for 30 min, a standard heat antigen retrieval in ethylene-
diaminetetracetic acid (pH 8.0) was performed. The sam-
ples were then incubated with antibodies against CD4, 
CD8, CD68, CD 163, and tryptase (dilution 1:100, DAKO, 
Glostrup, Denmark). The sections were then incubated with 
biotinylated anti-mouse immunoglobulins, peroxidase-con-
jugated streptavidin and diaminobenzidine (DAB). Coun-
terstain was performed with Harris hematoxylin. Each 
immunohistochemistry reaction was coupled with a positive 

control reaction (reactive lymph node) and a negative control 
reaction (no primary antibody).

Slide scanning and analysis

For each case, three slides stained for CD4, CD8, CD68, 
CD163, and tryptase expression were scanned using the 
whole-slide scanning platform Aperio Scanscope CS 
(Leica Biosystems, Nussloch, Germany). All the slides 
were scanned at the maximum magnification available 
(40 ×) and stored as digital high-resolution images (TIFF 
file, 1712 × 1090 pixels) on the workstation associated 
with the instrument. Digital slides were inspected with 
the Aperio Imagescope v.11 software (Leica Biosystems, 
Nussloch, Germany) at 20 × magnification, and ten fields 
with equal area were selected for the analysis at 40 × mag-
nification. CD4, CD8, CD68, CD163, and tryptase expres-
sion were assessed with the Positive Pixel Count algo-
rithm embedded in the Aperio Imagescope software and 
reported as a percentage of positivity, defined as the num-
ber of positively stained pixels on the total of pixels of 
the image. Fields were selected in areas with the most 
intensive expression.

Image analysis methods

To estimate the immunoreactivity levels exhibited by the 
considered tissues, computer-assisted image analysis was 
performed by using the ImageJ software, freely available 
at http://​rsb.​info.​nih.​gov/​ij/ [10]. Briefly, after shading 
correction and contrast enhancement, color deconvolu-
tion was applied. This procedure implements stain sepa-
ration according to the method by Ruifrok et al. [11] and 
was performed by using an ImageJ plugin (named ‘Col-
ourdeconvolution′) specifically developed by Gabriel 
Landini (see https://​blog.​bham.​ac.​uk/​intel​limic/g-​landi​
ni-​softw​are/). This procedure leads to the generation of 
two images mainly containing DAB- and hematoxylin-
stained structures, respectively. By conventional thresh-
olding methods [12], immunoreactive structures can be 
easily discriminated from the first one, while the second 
one allows the discrimination of nuclear profiles (Fig. 1). 
The total amount of immunoreactive structures was evalu-
ated by estimating the percent of tissue area (Area%) they 
occupy. The position of positive cells in the tissue was 
then obtained by selecting nuclear profiles co-localized 
with immunoreactive regions and estimating their (x,y) 
co-ordinates.

Starting from the coordinates, two methods were fol-
lowed to characterize the spatial distribution of the posi-
tive cells in the tissues. The first one was a ‘morphologi-
cal approach’ based on the estimation of a uniformity 

http://rsb.info.nih.gov/ij/
https://blog.bham.ac.uk/intellimic/g-landini-software/
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index according to a previously described procedure 
[13]. This index can have any value between 1 (when the 
objects are distributed in a regular array) and 0 (when 
maximal clustering occurs). The second one was an 
approach based on ‘spatial statistics’ (see [14] for details). 
It involves the calculation of the Ripley’s K-function [15] 
of the distances between cells. To interpret the cell-to-
cell spatial relationship statistically, this function (K(d)) 
must be compared with the value estimated (K0(d)) on 
random (Poisson) point patterns. If K(d) is significantly 
greater than K0(d) for any range of d, then the cells are 
clustered, i.e., they are closer to each other than could 
be expected by chance. On the contrary, if K(d) is sig-
nificantly lower than K0(d), then short cell–cell distances 
are less frequent than could be expected by chance, i.e., 
the placement of the cells exhibits ‘avoidance.’ For this 
reason, 100 random point patterns per analyzed field were 

computer generated. Each pattern had the same number 
of points as the number of observed cell profiles in the 
corresponding field.

Statistics

Within each sample, the obtained immunoreactive area 
% and uniformity index values were averaged to provide 
a representative value of each parameter for that sample. 
Differences between GCB and ABC were then statisti-
cally tested by two-samples Student’s t-test. The GraphPad 
Prism 3.0 statistical package (GraphPad Software Inc., San 
Diego, CA) was used for the analysis, and p < 0.05 was 
considered as the limit for statistical significance. From 
the 100 random point patterns generated in association 
with each experimental pattern (see Image analysis meth-
ods), an estimate of the average K0-function together with 

Fig. 1   Schematic illustration 
of the image analysis proce-
dure. a Microscope image 
from a tissue section processed 
for immunohistochemistry 
(anti-CD8 antibody, original  
magnification 40X). b Staining 
separation obtained by color 
deconvolution [11]: the DAB 
and the hematoxylin images are 
shown in the upper and lower 
panel, respectively. c From the 
images in b two binary images 
of the immunoreactive area 
(upper panel) and of the nuclei 
(lower panel) were obtained 
by conventional thresholding 
[12]. d By applying to the two 
binary images morphological 
and Boolean operations [28], 
the nuclei co-localized with 
[11] the immunoreactivity can 
be selected and their positions 
recorded. They appear as yellow 
circles superimposed to the 
original image
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its 95% confidence interval envelopes was obtained [14]. 
They were used to statistically assess deviations of the 
experimental K-function from randomness.

Results

As indicated by the immunoreactive area% values (Fig. 2a), 
the expression level of CD4, CD8, CD68 and CD163 was 
significantly higher in ABC tissue samples as compared 
to the samples from GCB, while no differences were 
detected between the two conditions in terms of the tryptase 
immunoreactivity.

The spatial distribution of positive cells, however, signifi-
cantly differed between the two tissue types. As illustrated 
in Fig. 2b, the cell patterns generated by CD4-positive, 
CD8-positive, CD163-positive and tryptase-positive cell 
profiles exhibited a significantly higher uniformity index in 
ABC than in GCB tissue samples, indicating a tendency of 
the cells to assume a more uniform distribution in the tis-
sues from ABC. The only exception was the distribution of 
CD68-positive cell-profiles which resulted similarly distrib-
uted in both ABC and GCB tissues.

This finding was further confirmed by the analysis based 
on spatial statistics. For all the considered markers, indeed, 
the positive-cell distributions appeared clustered in tissues 
from GCB, as indicated by a K(d) significantly higher than 
the expected value for complete spatial randomness, while in 
tissues from ABC such a difference was lower or absent. An 
example is provided in Fig. 3 where data on CD163-positive 
cells are shown.

Discussion

The inflammatory microenvironment has a strong impact 
on the development of cancer, which is seen not only as 
a genetic disease involving the accumulation of mutations 
that confer a selective advantage to the cancer cell but also 
as a result of the complex interactions and relationships that 
occur between immune cells, stromal cells, endothelial cells 
and the tumor cells.

Different inflammatory cells of the tumor microenviron-
ment have been analyzed in DLBCL to establish different 
correlations regarding prognostic significance, stage-related 
tumor progression and differences in treatment outcome 
[16–19].

Our understanding of tumor heterogeneity in cancer 
progression derives from studies conducted at the genomic 
and transcriptomic levels, but little is known at the morpho-
logical distribution of the different cellular populations. We 
have already studied the pattern of distribution of mast cells 
in biopsy samples obtained endometrial adenocarcinoma, 
advanced primary melanoma, non-small lung carcinoma and 
cutaneous mastocytoma [13]. The results of this study have 
demonstrated that mast cells showed a virtual random spatial 
distribution, albeit with varying densities in all the tumors, 
despite histopathological differences.

The results of this study have evidenced that cell patterns 
generated by CD4-, CD8-, CD-68-, CD163- and tryptase-
positive cell profiles exhibited a significantly higher uni-
formity index in the more aggressive ABC subtype than in 
the less aggressive GBC subtype, indicating a tendency of 
the cells to assume a more uniform distribution in the tissues 
from ABC. This finding was confirmed by the analysis based 
on spatial statistics. In fact, the positive-cell distributions 
appeared clustered in tissues from GCB, while in tissues 
from ABC such a feature was lower or absent.

The spatial distribution of the cells is of particular sig-
nificance from the point of view of the biological processes 
occurring in tumor tissues and the development of tools able 
to quantitatively characterize the morphologic organization 
of the cell patterns could be of interest to study the biol-
ogy of inflammatory cells in tumor microenvironment. The 
idea that tumors are composed of a heterogeneous tumor cell 
population suggests that the biological behavior of tumors 

Fig. 2   Morphometric analysis of the positive-cell patterns corre-
sponding to the considered markers. Mean percent tissue area in 
a and uniformity index in b exhibited by the positive cells in tis-
sue samples from GCB and ABC
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depends on the composition of the tumor tissue rather than 
on a common characteristic of the tumor cell. In this con-
text, it is extremely important to evaluate the characteristic 
of the different inflammatory cells constituting the tumor 
microenvironment. Different mathematical models of cancer 
have been developed, but only recently scientists have recog-
nized their value. In this respect, the spatial organization of 
the different components of this microenvironment emerged 
as a factor of particular interest. This feature, indeed, may 
significantly influence the interactions between the different 
cell populations as suggested by models of tissue growth 
[20] and signal diffusion in tissues [21]. Available simula-
tion results indicated that cell distribution is a key factor 
affecting the diffusion of signals, growth factors and nutri-
ents [21], which in turn impact on tissue growth and on the 
characteristics of the grown tissue pattern [20]. In this con-
text, an almost uniform distribution of the signaling cells 
has been shown to be more efficient in promoting trophic 
effects [21]. The here reported results appear consistent with 
this suggestion.

From an experimental standpoint, fractal dimension has 
been used to quantitatively characterize the irregular mor-
phology of tumors [22] and vasculature [23], and digital 
pathology has provided several opportunities [24] to esti-
mate quantitative parameters of the involved cell populations 

by improving and automating tasks such as cell counting 
[25] and cell position mapping [26].

However, there is strong evidence of ecological phenom-
ena occurring in the tumor microenvironment, and morpho-
logical descriptors characterizing tissue architecture and the 
relationship between the distributions exhibited by the differ-
ent cell populations involved may be of significant help in the 
study of these phenomena. In this respect, the introduction 
of spatial statistics tools can provide a substantial support to 
this type of investigation by providing metrics (such as the 
here used uniformity index) to further expand the descrip-
tion of the complex structure of this tissue environment. As 
recently documented in a methodological study [27] based 
on CD68-positive macrophages within human head and neck 
tumors, combinations of spatial statistics-derived parameters 
can lead to better predictions of macrophage infiltration than 
any classical morphometric method. This type of approach, 
therefore, may provide a more accurate description of the 
functional status of the tumor, potentially leading to a better 
view on patient prognosis [27].
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Fig. 3   Spatial statistics-based analysis of the cell patterns from 
CD163-stained samples. Representative cell patterns from GCB 
in a and ABC in b tissue samples. Microscope images (left panel) 
are shown together with the corresponding pattern of positive cells 
(middle panel). In the right panel, the function L(d) = K(d)–K0(d) 
(see text) is plotted together with the upper- and lower-95% confi-
dence interval envelopes for a random distribution (dashed lines). As 

shown, the L-function indicates that the CD163-positive cell pattern 
from GCB does not uniformly fill the tissue space but appears sig-
nificantly aggregated since the L-function is outside the superior limit 
for a random point process for a quite large interval of cell-to-cell dis-
tances. On the contrary, the CD163-positive cell pattern from ABC 
does not differ significantly from a random spatial distribution
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