42 research outputs found

    Chemical probing spectroscopy of H3+ above the barrier to linearity

    Full text link
    We have performed chemical probing spectroscopy of H3+ ions trapped in a cryogenic 22-pole ion trap. The ions were buffer-gas cooled to 55K by collisions with helium and argon. Excitation to states above the barrier to linearity was achieved by a Ti:Sa laser operated between 11300 and 13300 cm-1. Subsequent collisions of the excited H3+ ions with argon lead to the formation of ArH+ ions that were detected by a quadrupole mass spectrometer with high sensitivity. We report the observation of 17 previously unobserved transitions to states above the barrier to linearity. Comparison to theoretical calculations suggests that the transition strengths of some of these lines are more than five orders of magnitude smaller than those of the fundamental band, which renders them - to the best of our knowledge - the weakest H3+ transitions observed to date.Comment: 22 pages, 5 figures, submitted to JC

    Photodissociation and induced chemical asymmetries on ultra-hot gas giants. A case study of HCN on WASP-76 b

    Full text link
    Recent observations have resulted in the detection of chemical gradients on ultra-hot gas giants. Notwithstanding their high temperature, chemical reactions in ultra-hot atmospheres may occur in disequilibrium, due to vigorous day-night circulation and intense UV radiation from their stellar hosts. The goal of this work is to explore whether photochemistry is affecting the composition of ultra-hot giant planets, and if it can introduce horizontal chemical gradients. In particular, we focus on hydrogen cyanide (HCN) on WASP-76 b, as it is a photochemically active molecule with a reported detection on only one side of this planet. We use a pseudo-2D chemical kinetics code to model the chemical composition of WASP-76 b along its equator. Our approach improves on chemical equilibrium models by computing vertical mixing, horizontal advection, and photochemistry. We find that production of HCN is initiated through thermal and photochemical dissociation of CO and N2 on the day side of WASP-76 b, which are subsequently transported to the night side via the equatorial jet stream. This process results in an HCN gradient with a maximal abundance on the planet's morning limb. We verified that photochemical dissociation is a necessary condition for this mechanism, as thermal dissociation alone proves insufficient. Other species produced via night-side disequilibrium chemistry are SO2 and S2. Our model acts as a proof of concept for chemical gradients on ultra-hot exoplanets. We demonstrate that even ultra-hot planets can exhibit disequilibrium chemistry and recommend that future studies do not neglect photochemistry in their analyses of ultra-hot planets.Comment: 15 pages, 9 figure

    Resonant structure of low-energy H3+ dissociative recombination

    Get PDF
    New high-resolution dissociative recombination rate coefficients of rotationally cool and hot H3+ in the vibrational ground state have been measured with a 22-pole trap setup and a Penning ion source, respectively, at the ion storage ring TSR. The experimental results are compared with theoretical calculations to explore the dependence of the rate coefficient on ion temperature and to study the contributions of different symmetries to probe the rich predicted resonance spectrum. The break-up energy was investigated by fragment imaging to derive internal temperatures of the stored parent ions under differing experimental conditions. A systematic experimental assessment of heating effects is performed which, together with a survey of other recent storage-ring data, suggests that the present rotationally cool rate-coefficient measurement was performed at 380^{+50}_{-130} K and that this is the lowest rotational temperature so far realized in storage-ring rate-coefficient measurements on H3+. This partially supports the theoretical suggestion that higher temperatures than assumed in earlier experiments are the main cause for the large gap between the experimental and theoretical rate coefficients. For the rotationally hot rate-coefficient measurement a temperature of below 3250K is derived. From these higher-temperature results it is found that increasing the rotational ion temperature in the calculations cannot fully close the gap between the theoretical and experimental rate coefficients.Comment: 12 pages, 7 figures (11 subfigures), 3 table

    PDRs4All II: JWST's NIR and MIR imaging view of the Orion Nebula

    Full text link
    The JWST has captured the most detailed and sharpest infrared images ever taken of the inner region of the Orion Nebula, the nearest massive star formation region, and a prototypical highly irradiated dense photo-dissociation region (PDR). We investigate the fundamental interaction of far-ultraviolet photons with molecular clouds. The transitions across the ionization front (IF), dissociation front (DF), and the molecular cloud are studied at high-angular resolution. These transitions are relevant to understanding the effects of radiative feedback from massive stars and the dominant physical and chemical processes that lead to the IR emission that JWST will detect in many Galactic and extragalactic environments. Due to the proximity of the Orion Nebula and the unprecedented angular resolution of JWST, these data reveal that the molecular cloud borders are hyper structured at small angular scales of 0.1-1" (0.0002-0.002 pc or 40-400 au at 414 pc). A diverse set of features are observed such as ridges, waves, globules and photoevaporated protoplanetary disks. At the PDR atomic to molecular transition, several bright features are detected that are associated with the highly irradiated surroundings of the dense molecular condensations and embedded young star. Toward the Orion Bar PDR, a highly sculpted interface is detected with sharp edges and density increases near the IF and DF. This was predicted by previous modeling studies, but the fronts were unresolved in most tracers. A complex, structured, and folded DF surface was traced by the H2 lines. This dataset was used to revisit the commonly adopted 2D PDR structure of the Orion Bar. JWST provides us with a complete view of the PDR, all the way from the PDR edge to the substructured dense region, and this allowed us to determine, in detail, where the emission of the atomic and molecular lines, aromatic bands, and dust originate

    PDRs4All IV. An embarrassment of riches: Aromatic infrared bands in the Orion Bar

    Full text link
    (Abridged) Mid-infrared observations of photodissociation regions (PDRs) are dominated by strong emission features called aromatic infrared bands (AIBs). The most prominent AIBs are found at 3.3, 6.2, 7.7, 8.6, and 11.2 Ό\mum. The most sensitive, highest-resolution infrared spectral imaging data ever taken of the prototypical PDR, the Orion Bar, have been captured by JWST. We provide an inventory of the AIBs found in the Orion Bar, along with mid-IR template spectra from five distinct regions in the Bar: the molecular PDR, the atomic PDR, and the HII region. We use JWST NIRSpec IFU and MIRI MRS observations of the Orion Bar from the JWST Early Release Science Program, PDRs4All (ID: 1288). We extract five template spectra to represent the morphology and environment of the Orion Bar PDR. The superb sensitivity and the spectral and spatial resolution of these JWST observations reveal many details of the AIB emission and enable an improved characterization of their detailed profile shapes and sub-components. While the spectra are dominated by the well-known AIBs at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 Ό\mum, a wealth of weaker features and sub-components are present. We report trends in the widths and relative strengths of AIBs across the five template spectra. These trends yield valuable insight into the photochemical evolution of PAHs, such as the evolution responsible for the shift of 11.2 Ό\mum AIB emission from class B11.2_{11.2} in the molecular PDR to class A11.2_{11.2} in the PDR surface layers. This photochemical evolution is driven by the increased importance of FUV processing in the PDR surface layers, resulting in a "weeding out" of the weakest links of the PAH family in these layers. For now, these JWST observations are consistent with a model in which the underlying PAH family is composed of a few species: the so-called 'grandPAHs'.Comment: 25 pages, 10 figures, to appear in A&

    PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar

    Full text link
    (Abridged) We investigate the impact of radiative feedback from massive stars on their natal cloud and focus on the transition from the HII region to the atomic PDR (crossing the ionisation front (IF)), and the subsequent transition to the molecular PDR (crossing the dissociation front (DF)). We use high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science Program. The NIRSpec data reveal a forest of lines including, but not limited to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the first time towards a PDR. Their spatial distribution resolves the H and He ionisation structure in the Huygens region, gives insight into the geometry of the Bar, and confirms the large-scale stratification of PDRs. We observe numerous smaller scale structures whose typical size decreases with distance from Ori C and IR lines from CI, if solely arising from radiative recombination and cascade, reveal very high gas temperatures consistent with the hot irradiated surface of small-scale dense clumps deep inside the PDR. The H2 lines reveal multiple, prominent filaments which exhibit different characteristics. This leaves the impression of a "terraced" transition from the predominantly atomic surface region to the CO-rich molecular zone deeper in. This study showcases the discovery space created by JWST to further our understanding of the impact radiation from young stars has on their natal molecular cloud and proto-planetary disk, which touches on star- and planet formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&

    Gas-phase spectroscopy of photostable PAH ions from the mid- to far-infrared

    Get PDF
    International audienceWe present gas-phase InfraRed Multiple Photon Dissociation (IRMPD) spectroscopy of cationic phenanthrene, pyrene, and perylene over the 100-1700 cm-1 (6-95 ÎŒm) spectral range. This range covers both local vibrational modes involving C-C and C-H bonds in the mid-IR, and large-amplitude skeletal modes in the far-IR. The experiments were done using the 7T Fourier-Transform Ion Cyclotron Resonance (FTICR) mass spectrometer integrated in the Free-Electron Laser for Intra-Cavity Experiments (FELICE), and findings were complemented with Density Functional Theory (DFT) calculated harmonic and anharmonic spectra, matching the experimental spectra well. The experimental configuration that enables this sensitive spectroscopy of the strongly bound, photoresistant Polycyclic Aromatic Hydrocarbons (PAHs) over a wide range can provide such high photon densities that even combination modes with calculated intensities as low as 0.01 km mol-1 near 400 cm-1 (25 ÎŒm) can be detected. Experimental frequencies from this work and all currently available IRMPD spectra for PAH cations were compared to theoretical frequencies from the NASA Ames PAH IR Spectroscopic Database to verify predicted trends for far-IR vibrational modes depending on PAH shape and size, and only a relatively small redshift (6-11 cm-1) was found between experiment and theory. The absence of spectral congestion and the drastic reduction in bandwidth with respect to the mid-IR make the far-IR fingerprints viable candidates for theoretical benchmarking, which can aid in the search for individual large PAHs in the interstellar medium
    corecore