22 research outputs found
11,12-EET stimulates the association of BK channel α and β(1) subunits in mitochondria to induce pulmonary vasoconstriction
In the systemic circulation, 11,12-epoxyeicosatrienoic acid (11,12-EET) elicits nitric oxide (NO)- and prostacyclin-independent vascular relaxation, partially through the activation of large conductance Ca2+-activated potassium (BK) channels. However, in the lung 11,12-EET contributes to hypoxia-induced pulmonary vasoconstriction. Since pulmonary artery smooth muscle cells also express BK channels, we assessed the consequences of BKβ1 subunit deletion on pulmonary responsiveness to 11,12-EET as well as to acute hypoxia. In buffer-perfused mouse lungs, hypoxia increased pulmonary artery pressure and this was significantly enhanced in the presence of NO synthase (NOS) and cyclooxygenase (COX) inhibitors. Under these conditions the elevation of tissue EET levels using an inhibitor of the soluble epoxide hydrolase (sEH-I), further increased the hypoxic contraction. Direct administration of 11,12-EET also increased pulmonary artery pressure, and both the sEH-I and 11,12-EET effects were prevented by iberiotoxin and absent in BKβ1−/− mice. In pulmonary artery smooth muscle cells treated with NOS and COX inhibitors and loaded with the potentiometric dye, di-8-ANEPPS, 11,12-EET induced depolarization while the BK channel opener NS1619 elicited hyperpolarization indicating there was no effect of the EET on classical plasma membrane BK channels. In pulmonary artery smooth muscle cells a subpopulation of BK channels is localized in mitochondria. In these cells, 11,12-EET elicited an iberiotoxin-sensitive loss of mitochondrial membrane potential (JC-1 fluorescence) leading to plasma membrane depolarization, an effect not observed in BKβ1−/− cells. Mechanistically, stimulation with 11,12-EET time-dependently induced the association of the BK α and β1 subunits. Our data indicate that in the absence of NO and prostacyclin 11,12-EET contributes to pulmonary vasoconstriction by stimulating the association of the α and β1 subunits of mitochondrial BK channels. The 11,12-EET-induced activation of BK channels results in loss of the mitochondrial membrane potential and depolarization of the pulmonary artery smooth muscle cells
The suitability of iodinated Angiotensin-(1-7) peptides as pharmacological tools
INTRODUCTION: The heptapeptide Angiotensin-(1-7) [(Ang-(1-7)] is a biologically active component of the Renin-Angiotensin System. Pharmacological studies often involve Ang-(1-7) radioactively labelled with (125)I. Given the small size of the original peptide, we investigated whether introduction of a rather bulky iodine label interferes with the biological activity of Ang-(1-7). METHODS: Ang-(1-7) was labelled with nonradioactive iodine with the chloramine-T method. The reaction products were separated on HPLC and analysed with mass spectrometry. The products were tested for biological activity in two ways: The ability of labelled Ang-(1-7) to block Ang II-induced contraction in rat aortic rings was tested in an organ bath setup. The affinity of labelled angiotensin for ACE in rat plasma was examined in vitro. RESULTS: Iodination of Angiotensin-(1-7) resulted in two main products: monoiodinated and diiodinated Ang-(1-7) that could be easily separated on HPLC. In an organ bath experiment, monoiodinated Ang-(1-7) blocked Ang II responses identical to the native compound, whereas diiodinated Ang-(1-7) had lost its ability to block Ang II responses. Likewise, monoiodinated Ang-(1-7) had retained its affinity for ACE, while the affinity of diiodinated Ang-(1-7) was greatly reduced. DISCUSSION: Monoiodinated Ang-(1-7) has a biological activity identical to the native compound, whereas this is lost in diiodinated Ang-(1-7). Therefore, only the monoiodinated radioactive form seems suited for pharmacological studies
Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase
Proline-rich tyrosine kinase 2 (PYK2) can be activated by angiotensin II (Ang II) and reactive oxygen species. We report that in endothelial cells, Ang II enhances the tyrosine phosphorylation of endothelial NO synthase (eNOS) in an AT1-, H2O2-, and PYK2-dependent manner. Low concentrations (1–100 µmol/liter) of H2O2 stimulated the phosphorylation of eNOS Tyr657 without affecting that of Ser1177, and attenuated basal and agonist-induced NO production. In isolated mouse aortae, 30 µmol/liter H2O2 induced phosphorylation of eNOS on Tyr657 and impaired acetylcholine-induced relaxation. Endothelial overexpression of a dominant-negative PYK2 mutant protected against H2O2-induced endothelial dysfunction. Correspondingly, carotid arteries from eNOS−/− mice overexpressing the nonphosphorylatable eNOS Y657F mutant were also protected against H2O2. In vivo, 3 wk of treatment with Ang II considerably increased levels of Tyr657-phosphorylated eNOS in the aortae of wild-type but not Nox2y/− mice, and this was again associated with a clear impairment in endothelium-dependent vasodilatation in the wild-type but not in the Nox2y/− mice. Collectively, endothelial PYK2 activation by Ang II and H2O2 causes the phosphorylation of eNOS on Tyr657, attenuating NO production and endothelium-dependent vasodilatation. This mechanism may contribute to the endothelial dysfunction observed in cardiovascular diseases associated with increased activity of the renin–angiotensin system and elevated redox stress
The role of eNOS on the compensatory regulation of vascular tonus by H2S in mouse carotid arteries
WOS: 000408396500006PubMed ID: 28414104The gasotransmitter nitric oxide (NO) has an important role in vascular function and a decrease in its bioavailability is accepted as a main pathological mechanism for cardiovascular diseases. However, other gasotransmitters such as hydrogen sulfide (H2S) are also generated by the endothelium and can also affect vascular tone and a crosstalk may exist between H2S and NO. We therefore investigated the consequences of deficiency, replacement or overexpression of endothelial nitric oxide synthase (eNOS) on H2S-induced vascular responses in murine carotid arteries. In pre-contracted carotid arteries from wild-type (WT) mice, L-cysteine elicited relaxation that was inhibited by the H2S synthesis inhibitor amino-oxyacetic acid (AOAA). Genetic deletion of eNOS increased L-cysteine-induced relaxation compared to WT, but the replacement of eNOS by adenoviral transfection or H2S synthesis inhibition by AOAA reversed it. Furthermore, eNOS deletion did not alter NaHS-induced relaxation in carotid arteries while eNOS overexpression/replacement increased NaHS-induced relaxation responses in carotid arteries from WT or eNOS(-/-). We suggest that, endogenously produced H2S can compensate for impaired vasodilatory responses in the absence of NO to maintain vascular patency; while, eNOS abundance can limit endogenous H2S-induced vascular responses in mice carotid arteries. Our result suggests that endogenous vs. exogenous H2S-induced relaxation are reciprocally regulated by NO in mice carotid arteries. (C) 2017 Elsevier Inc. All rights reserved.TUBITAK (The Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [109s453]; STSMThis study was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) grant # 109s453 (GYA) allowing to joining COST action BM1005. The MC members (GYA and IF) thank COST action BM1005 for networking and the support by a STSM (EE)
Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation
Fluid shear stress elicits endothelium-dependent vasodilatation via nitric oxide and prostacyclin-dependent and -independent mechanisms. The latter includes the opening of Ca2+-operated potassium channels by cytochrome P450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) leading to endothelial hyperpolarization. We previously reported that EETs activate the transient receptor potential (TRP) V4 channel in vascular endothelial cells and that Ca2+ influx in these cells in response to mechanical stimuli is dependent on the activation of CYP epoxygenases. We therefore hypothesized that the TRPV4 channel is involved in the flow-induced vasodilatation attributed to the endothelium-derived hyperpolarizing factor (EDHF).status: publishe
Endothelial AMP-Activated Kinase α1 Phosphorylates eNOS on Thr495 and Decreases Endothelial NO Formation
AMP-activated protein kinase (AMPK) is frequently reported to phosphorylate Ser1177 of the endothelial nitric-oxide synthase (eNOS), and therefore, is linked with a relaxing effect. However, previous studies failed to consistently demonstrate a major role for AMPK on eNOS-dependent relaxation. As AMPK also phosphorylates eNOS on the inhibitory Thr495 site, this study aimed to determine the role of AMPKα1 and α2 subunits in the regulation of NO-mediated vascular relaxation. Vascular reactivity to phenylephrine and acetylcholine was assessed in aortic and carotid artery segments from mice with global (AMPKα−/−) or endothelial-specific deletion (AMPKαΔEC) of the AMPKα subunits. In control and AMPKα1-depleted human umbilical vein endothelial cells, eNOS phosphorylation on Ser1177 and Thr495 was assessed after AMPK activation with thiopental or ionomycin. Global deletion of the AMPKα1 or α2 subunit in mice did not affect vascular reactivity. The endothelial-specific deletion of the AMPKα1 subunit attenuated phenylephrine-mediated contraction in an eNOS- and endothelium-dependent manner. In in vitro studies, activation of AMPK did not alter the phosphorylation of eNOS on Ser1177, but increased its phosphorylation on Thr495. Depletion of AMPKα1 in cultured human endothelial cells decreased Thr495 phosphorylation without affecting Ser1177 phosphorylation. The results of this study indicate that AMPKα1 targets the inhibitory phosphorylation Thr495 site in the calmodulin-binding domain of eNOS to attenuate basal NO production and phenylephrine-induced vasoconstriction