93 research outputs found

    Higher yields of cyclodepsipetides from Scopulariopsis brevicaulis by random mutagenesis

    Get PDF
    The ascomycete Scopulariopsis brevicaulis, which was isolated from the marine sponge Tethya aurantium, produces two cyclodepsipeptides, scopularides A and B [1]. Both peptides exhibit activity against several tumor cell lines. Within the EU-project MARINE FUNGI (EU FP7, 265926) one of our aims is to enhance the production of these secondary metabolites. We are in the process to establish two ways of random mutagenesis by both UV radiation and transposon-mediated. To this end we created UV-mutants and a miniaturised screening method was developed. UV-radiation was performed at 312 nm and the survival rate was set to 1 %. With this method a mutant library was established. To screen these mutants for higher secondary metabolites production, we developed a miniaturised screening method which includes decreased cultivation volume, fast extraction and an optimised LC-MS analysis format. Using the UV mutagenesis, we were able to identify several mutants with a higher scopularide production in comparison to the wild type. One of these mutants, which produces three times more biomass and more than double the amount of scopularide A, has been used for another round of mutation. Next generation sequencing is being employed to identify the molecular genetic basis of the observed mutations. In parallel we employ transposable elements to introduce mutants [2]. The impact of transposons on gene expression as well as their ability to cause major mutations within the genome or single genes makes them an interesting tool for random mutagenesis [3, 4, 5]. We employ the Vader transposon in its homologous host and found that Vader mostly integrates within or very close to genes. Thus it appears to be a useful tool for transposon-mediated mutagenesis in A. niger (6). At current we try to enhance its usability by modifying the Vader element

    Production of scopularide A in submerged culture with Scopulariopsis brevicaulis

    Get PDF
    Background: Marine organisms produce many novel compounds with useful biological activity, but are currently underexploited. Considerable research has been invested in the study of compounds from marine bacteria, and several groups have now recognised that marine fungi also produce an interesting range of compounds. During product discovery, these compounds are often produced only in non-agitated culture conditions, which are unfortunately not well suited for scaling up. A marine isolate of Scopulariopsis brevicaulis, strain LF580, produces the cyclodepsipeptide scopularide A, which has previously only been produced in non-agitated cultivation. Results: Scopulariopsis brevicaulis LF580 produced scopularide A when grown in batch and fed-batch submerged cultures. Scopularide A was extracted primarily from the biomass, with approximately 7% being extractable from the culture supernatant. By increasing the biomass density of the cultivations, we were able to increase the volumetric production of the cultures, but it was important to avoid nitrogen limitation. Specific production also increased with increasing biomass density, leading to improvements in volumetric production up to 29-fold, compared with previous, non-agitated cultivations. Cell densities up to 36 g L-1 were achieved in 1 to 10 L bioreactors. Production of scopularide A was optimised in complex medium, but was also possible in a completely defined medium. Conclusions: Scopularide A production has been transferred from a non-agitated to a stirred tank bioreactor environment with an approximately 6-fold increase in specific and 29-fold increase in volumetric production. Production of scopularide A in stirred tank bioreactors demonstrates that marine fungal compounds can be suitable for scalable production, even with the native production organism

    Development and Validation of a Fast and Optimized Screening Method for Enhanced Production of Secondary Metabolites Using the Marine Scopulariopsis brevicaulis Strain LF580 Producing Anti-Cancer Active Scopularide A and B

    Get PDF
    Natural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds. The secondary metabolite production of strain LF580 was optimized by random mutagenesis employing UV radiation. For a fast and reliable detection of the intracellular secondary metabolite production level, a miniaturized bioactivity-independent screening method was developed, as the random mutagenesis yielded a large number of mutants to be analysed quantitatively and none of the existing hyphenated bioassay-dependent screening systems could be applied. The method includes decreased cultivation volume, a fast extraction procedure as well as an optimized LC-MS analysis. We show that deviation could be specifically reduced at each step of the process: The measuring deviation during the analysis could be minimized to 5% and technical deviation occurring in the downstream part to 10–15%. Biological variation during the cultivation process still has the major influence on the overall variation. However, the approach led to a 10-fold reduction of time and similar effects on costs and effort compared to standard reference screening methods. The method was applied to screen the UV-mutants library of Scopulariopsis brevicaulis LF580. For validation purposes, the occurring variations in the miniaturized scale were compared to those in the classical Erlenmeyer flask scale. This proof of concept was performed using the wild type strain and 23 randomly selected mutant strains. One specific mutant strain with an enhanced production behavior could be obtained

    Lindgomycin, an Unusual Antibiotic Polyketide from a Marine Fungus of the Lindgomycetaceae

    Get PDF
    An unusual polyketide with a new carbon skeleton, lindgomycin (1), and the recently described ascosetin (2) were extracted from mycelia and culture broth of different Lindgomycetaceae strains, which were isolated from a sponge of the Kiel Fjord in the Baltic Sea (Germany) and from the Antarctic. Their structures were established by spectroscopic means. In the new polyketide, two distinct domains, a bicyclic hydrocarbon and a tetramic acid, are connected by a bridging carbonyl. The tetramic acid substructure of compound 1 was proved to possess a unique 5-benzylpyrrolidine-2,4-dione unit. The combination of 5-benzylpyrrolidine-2,4-dione of compound 1 in its tetramic acid half and 3-methylbut-3-enoic acid pendant in its decalin half allow the assignment of a new carbon skeleton. The new compound 1 and ascosetin showed antibiotic activities with IC50 value of 5.1 (±0.2) µM and 3.2 (±0.4) μM, respectively, against methicillin-resistant Staphylococcus aureus

    Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant

    Get PDF
    The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenu

    Anti-tumor treatment and healthcare consumption near death in the era of novel treatment options for patients with melanoma brain metastases

    Get PDF
    BACKGROUND: Effective systemic treatments have revolutionized the management of patients with metastatic melanoma, including those with brain metastases. The extent to which these treatments influence disease trajectories close to death is unknown. Therefore, this study aimed to gain insight into provided treatments and healthcare consumption during the last 3 months of life in patients with melanoma brain metastases. METHODS: Retrospective, single-center study, including consecutive patients with melanoma brain metastases diagnosed between June-2015 and June-2018, referred to the medical oncologist, and died before November-2019. Patient and tumor characteristics, anti-tumor treatments, healthcare consumption, presence of neurological symptoms, and do-not-resuscitate status were extracted from medical charts. RESULTS: 100 patients were included. A BRAF-mutation was present in 66 patients. Systemic anti-tumor therapy was given to 72% of patients during the last 3 months of life, 34% in the last month, and 6% in the last week. Patients with a BRAF-mutation more frequently received systemic treatment during the last 3 (85% vs. 47%) and last month (42% vs. 18%) of life than patients without a BRAF-mutation. Furthermore, patients receiving systemic treatment were more likely to visit the emergency room (ER, 75% vs. 36%) and be hospitalized (75% vs. 36%) than those who did not. CONCLUSION: The majority of patients with melanoma brain metastases received anti-tumor treatment during the last 3 months of life. ER visits and hospitalizations occurred more often in patients on anti-tumor treatment. Further research is warranted to examine the impact of anti-tumor treatments close to death on symptom burden and care satisfaction

    Value of screening and follow-up brain MRI scans in patients with metastatic melanoma

    Get PDF
    BACKGROUND: Novel treatments make long‐term survival possible for subsets of patients with melanoma brain metastases. Brain magnetic resonance imaging (MRI) may aid in early detection of brain metastases and inform treatment decisions. This study aimed to determine the impact of screening MRI scans in patients with metastatic melanoma and follow‐up MRI scans in patients with melanoma brain metastases. METHODS: This retrospective cohort study included patients diagnosed with metastatic melanoma or melanoma brain metastases between June 2015 and January 2018. The impact of screening MRI scans was evaluated in the first 2 years after metastatic melanoma diagnosis. The impact of follow‐up MRI scans was examined in the first year after brain metastases diagnosis. The number of MRI scans, scan indications, scan outcomes, and changes in treatment strategy were analyzed. RESULTS: In total, 116 patients had no brain metastases at the time of the metastatic melanoma diagnosis. Twenty‐eight of these patients (24%) were subsequently diagnosed with brain metastases. Screening MRI scans detected the brain metastases in 11/28 patients (39%), of which 8 were asymptomatic at diagnosis. In the 96 patients with melanoma brain metastases, treatment strategy changed after 75/168 follow‐up MRI scans (45%). In patients treated with immune checkpoint inhibitors, the number of treatment changes after follow‐up MRI scans was lower when patients had been treated longer. CONCLUSION(S): Screening MRI scans aid in early detection of melanoma brain metastases, and follow‐up MRI scans inform treatment strategy. In patients with brain metastases responding to immune checkpoint inhibitors, treatment changes were less frequently observed after follow‐up MRI scans. These results can inform the development of brain imaging protocols for patients with immune checkpoint inhibitor sensitive tumors

    Common Variants in the Type 2 Diabetes KCNQ1 Gene Are Associated with Impairments in Insulin Secretion During Hyperglycaemic Glucose Clamp

    Get PDF
    Background: Genome-wide association studies in Japanese populations recently identified common variants in the KCNQ1 gene to be associated with type 2 diabetes. We examined the association of these variants within KCNQ1 with type 2 diabetes in a Dutch population, investigated their effects on insulin secretion and metabolic traits and on the risk of developing complications in type 2 diabetes patients. Methodology: The KCNQ1 variants rs151290, rs2237892, and rs2237895 were genotyped in a total of 4620 type 2 diabetes patients and 5285 healthy controls from the Netherlands. Data on macrovascular complications, nephropathy and retinopathy were available in a subset of diabetic patients. Association between genotype and insulin secretion/action was assessed in the additional sample of 335 individuals who underwent a hyperglycaemic clamp. Principal Findings: We found that all the genotyped KCNQ1 variants were significantly associated with type 2 diabetes in our Dutch population, and the association of rs151290 was the strongest (OR 1.20, 95% CI 1.07-1.35, p = 0.002). The risk C-allele of rs151290 was nominally associated with reduced first-phase glucose-stimulated insulin secretion, while the non-risk T-allele of rs2237892 was significantly correlated with increased second-phase glucose-stimulated insulin secretion (p = 0.025 and 0.0016, respectively). In addition, the risk C-allele of rs2237892 was associated with higher LDL and total cholesterol levels (p = 0.015 and 0.003, respectively). We found no evidence for an association of KCNQ1 with diabetic complications. Conclusions: Common variants in the KCNQ1 gene are associated with type 2 diabetes in a Dutch population, which can be explained at least in part by an effect on insulin secretion. Furthermore, our data suggest that KCNQ1 is also associated with lipid metabolism
    corecore