12 research outputs found

    Highlighting of the interactions of MYD88 and NFKB1 SNPs in rats resistant to decompression sickness: toward an autoimmune response

    Get PDF
    Decompression sickness (DCS) with neurological disorders includes an inappropriate inflammatory response which degenerates slowly, even after the disappearance of the bubbles. There is high inter-individual variability in terms of the occurrence of DCS that could have been mastered by the selection and then the breeding of DCS-resistant rats. We hypothesized the selection of single-nucleotide polymorphisms (SNPs) linked to autoimmunity operated upon a generation of a DCS-resistant strain of rats. We used the candidate gene approach and targeted SNPs linked to the signaling cascade that directly regulates inflammation of innate immunity transiting by the Toll-like receptors. Twenty candidate SNPs were investigated in 36 standard rats and 33 DCS-resistant rats. For the first time, we identify a diplotype (i.e., with matched haplotypes)—when coinherited—that strengthens protection against DCS, which is not strictly homozygous and suggests that a certain tolerance may be considered. We deduced an ideal haplotype of six variants from it (MyD88_50-T, _49-A, _97-C coupled to NFKB_85-T, _69-T, _45-T) linked to the resistant phenotype. Four among the six identified variants are located in pre- and/or post-transcriptional areas regulating MyD88 or NFKB1 expression. Because of missense mutations, the other two variants induce a structural change in the NFKB1 protein complex including one damage alteration according to the Missense3D algorithm. In addition to the MyD88/NFKB1 haplotype providing rats with a strong resistance to DCS, this also highlights the importance that the immune response, here linked to the genetic heritage, can have in the development of DCS and offer a new perspective for therapeutic strategies

    Consequences of prolonged total body immersion in cold water on muscle performance and EMG activity

    No full text
    The consequences of a prolonged total body immersion in cold water on the muscle function have not been documented yet, and they are the object of this French Navy research program. Ten elite divers were totally immerged and stayed immobile during 6 h in cold (18 and 10°C) water. We measured the maximal voluntary leg extension (maximal voluntary contraction, MVC) and evoked compound muscle potential (M wave) in vastus lateralis and soleus muscles at rest, after a submaximal (60% MVC) isometric extension allowing the measurement of the endurance time (Tlim). The power spectrum of surface electromyograms (EMG) was computed during 60% MVCs. MVCs and 60% MVC maneuvers were repeated four times during the immersion. Data were compared with those obtained in a control group studied in dry air condition during a 6-h session. Total body cooling did not affect MVC nor Tlim. The M wave duration increased in the coolest muscle (soleus), but only at 10°C at rest. There were no further fatigue-induced M wave alterations in both muscles. During 60% the MVCs, a time-dependant increase in the leftward shift of the EMG spectrum occurred at the two temperatures. These EMG changes were absent in the control group of subjects studied in dry air. The plasma lactate concentration was elevated throughout the 18 and mostly the 10°C immersion conditions. Throughout the 18°C immersion study, the resting potassium level did not significantly vary, whereas at 10°C, a significant potassium increase occurred soon and persisted throughout the study. Thus, total body immersion in cold water did not affect the global contractile properties of leg muscles during static efforts but elicited significant alterations in electromyographic events which may be related to the variations of interstitial fluid composition

    Whole body immersion and hydromineral homeostasis: effect of water temperature.

    No full text
    International audienceThis experiment was designed to assess the effects of prolonged whole body immersion (WBI) in thermoneutral and cold conditions on plasma volume and hydromineral homeostasis.10 navy "combat swimmers" performed three static 6-h immersions at 34 degrees C (T34), 18 degrees C (T18) and 10 degrees C (T10). Rectal temperature, plasma volume (PV) changes, plasma proteins, plasma and urine ions, plasma osmolality, renin, aldosterone and antidiuretic hormone (ADH) were measured. Results show that compared to pre-immersion levels, PV decreased throughout WBI sessions, the changes being markedly accentuated in cold conditions. At the end of WBI, maximal PV variations were -6.9% at T34, -14.3% at T18, and -16.3% at T10. Plasma osmolality did not change during and after T34 immersion, while hyperosmolality was present at the end of T18 immersion and began after only 1 h of T10 immersion. In the three temperature conditions, significant losses of water (1.6-1.7 l) and salt (6-8 g) occurred and were associated with similar increases in osmolar and free water clearances. Furthermore, T18 and T10 immersions increased the glomerular filtration rate. There was little or no change in plasma renin and ADH, while the plasma level of aldosterone decreased equally in the three temperature conditions. In conclusion, our data indicate that cold water hastened PV changes induced by immersion, and increased the glomerular filtration rate, causing larger accumulated water losses. The iso-osmotic hypovolemia may impede the resumption of baseline fluid balance. Results are very similar to those repeatedly described by various authors during head-out water immersion

    Evidence of a hormonal reshuffle in the cecal metabolome fingerprint of a strain of rats resistant to decompression sickness

    No full text
    International audienceOn one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the fecal metabolome from rat caecum. On the other side, there is high inter-individual variability in terms of occurrence of DCS. One could wonder whether the fecal metabolome could be linked to the DCS-susceptibility. We decided to study male and female rats selected for their resistance to decompression sickness, and we hypothesize a strong impregnation concerning the fecal metabolome. The aim is to verify whether the rats resistant to the accident have a fecal metabolomic signature different from the stem generations sensitive to DCS. 39 DCS-resistant animals (21 females and 18 males), aged 14 weeks, were compared to 18 age-matched standard Wistar rats (10 females and 8 males), i.e., the same as those we used for the founding stock. Conventional and ChemRICH approaches helped the metabolomic interpretation of the 226 chemical compounds analyzed in the cecal content. Statistical analysis shows a panel of 81 compounds whose expression had changed following the selection of rats based on their resistance to DCS. 63 compounds are sex related. 39 are in common. This study shows the spectral fingerprint of the fecal metabolome from the caecum of a strain of rats resistant to decompression sickness. This study also confirms a difference linked to sex in the metabolome of non-selected rats, which disappear with selective breeding. Results suggest hormonal and energetic reshuffle, including steroids sugars or antibiotic compounds, whether in the host or in the microbial community

    The Key Roles of Negative Pressure Breathing and Exercise in the Development of Interstitial Pulmonary Edema in Professional Male SCUBA Divers

    No full text
    Abstract Background Immersion pulmonary edema is potentially a catastrophic condition; however, the pathophysiological mechanisms are ill-defined. This study assessed the individual and combined effects of exertion and negative pressure breathing on the cardiovascular system during the development of pulmonary edema in SCUBA divers. Methods Sixteen male professional SCUBA divers performed four SCUBA dives in a freshwater pool at 1 m depth while breathing air at either a positive or negative pressure both at rest or with exercise. Echocardiography and lung ultrasound were used to assess the cardiovascular changes and lung comet score (a measure of interstitial pulmonary edema). Results The ultrasound lung comet score was 0 following both the dives at rest regardless of breathing pressure. Following exercise, the mean comet score rose to 4.2 with positive pressure breathing and increased to 15.1 with negative pressure breathing. The development of interstitial pulmonary edema was significantly related to inferior vena cava diameter, right atrial area, tricuspid annular plane systolic excursion, right ventricular fractional area change, and pulmonary artery pressure. Exercise combined with negative pressure breathing induced the greatest changes in these cardiovascular indices and lung comet score. Conclusions A diver using negative pressure breathing while exercising is at greatest risk of developing interstitial pulmonary edema. The development of immersion pulmonary edema is closely related to hemodynamic changes in the right but not the left ventricle. Our findings have important implications for divers and understanding the mechanisms of pulmonary edema in other clinical settings

    Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression?

    No full text
    International audienceOn one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1β and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management

    Cecal metabolome fingerprint in a rat model of decompression sickness with neurological disorders

    No full text
    International audienceMassive bubble formation after diving can lead to decompression sickness (DCS), which can result in neurological disorders. We demonstrated that hydrogen production from intestinal fermentation could exacerbate DCS in rats fed with a standard diet. The aim of this study is to identify a fecal metabolomic signature that may result from the effects of a provocative hyperbaric exposure. The fecal metabolome was studied in two groups of rats previously fed with maize or soy in order to account for diet effects. 64 animals, weighing 379.0_20.2 g on the day of the dive, were exposed to the hyperbaric protocol. The rats were separated into two groups: 32 fed with maize (Div MAIZE) and 32 fed with soy (Div SOY). Gut fermentation before the dive was estimated by measuring exhaled hydrogen. Following hyperbaric exposure, we assessed for signs of DCS. Blood was analyzed to assay inflammatory cytokines. Conventional and ChemRICH approaches helped the metabolomic interpretation of the cecal content. The effect of the diet is very marked at the metabolomic level, a little less in the blood tests, without this appearing strictly in the clinic status. Nevertheless, 37 of the 184 metabolites analyzed are linked to clinical status. 35 over-expressed compounds let suggest less intestinal absorption, possibly accompanied by an alteration of the gut microbial community, in DCS. The decrease in another metabolite suggests hepatic impairment. This spectral difference of the ceca metabolomes deserves to be studied in order to check if it corresponds to functional microbial particularities

    Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression?

    No full text
    International audienceOn one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1β and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management
    corecore