46 research outputs found

    The Recalcitrance and Resilience of Scientific Function

    Get PDF
    “Function” is a vitally important concept in the scientific community. Scientists use it to describe and address a wide variety of research problems. In publications, however, scientists within and across disciplines interpret function differently. For example, intense controversy surrounds what percentage of the human genome should be deemed "functional” rather than “junk DNA.” In this essay, we analyze the use of function in the research of de novo gene birth, a budding scientific field that studies how novel genes can emerge in non-genic sequences. Our research team, composed of a rhetorical scholar, philosopher, structural biologist and systems biologist, crafts a taxonomy of how “function” is variously constituted in de novo gene birth publications, including as expressions, capacities, interactions, physiological implications and evolutionary implications. We argue function is shaped by the diverse onto-epistemological perspectives of scientists and is both a recalcitrant and resilient concept of scientific practice. Informed by Gilles Deleuze and Felix Guattari’s writings on a scientific mode of thinking, functions are time-space scales of objects under investigation that make possible references to scientific measurements

    Des protéines et de leurs interactions aux principes évolutifs des systÚmes biologiques

    No full text
    Darwin exposed to the world that living species continuously evolve. Yet the molecular mechanisms of evolution remain under intense research. Systems biology proposes that dynamic molecular networks underlie relationships between genotype, environment and phenotype, but the organization of these networks is mysterious. Combining established concepts from evolutionary and systems biology with protein interaction mapping and the study of genome annotation methodologies, I have developed new bioinformatics approaches that partially unveiled the composition and organization of cellular systems for three eukaryotic organisms: the baker’s yeast, the nematode Caenorhabditis elegans and the plant Arabidopsis thaliana. My analyses led to insights into the evolution of biological systems. First, I propose that the translation of peptides from intergenic regions could lead to de novo birth of new protein-coding genes. Second, I show that the evolution of proteins originating from gene duplications and of their physical interaction repertoires are tightly interrelated. Lastly, I uncover signatures of the ancestral host-pathogen co-evolution in the topology of a host protein interaction network. My PhD work supports the thesis that molecular systems also evolve in a Darwinian fashion.Darwin a rĂ©vĂ©lĂ© au monde que les espĂšces vivantes ne cessent jamais d’évoluer, mais les mĂ©canismes molĂ©culaires de cette Ă©volution restent le sujet de recherches intenses. La biologie systĂ©mique propose que les relations entre gĂ©notype, environnement et phĂ©notype soient sous-tendues par un ensemble de rĂ©seaux molĂ©culaires dynamiques au sein de la cellule, mais l’organisation de ces rĂ©seaux demeure mystĂ©rieuse. En combinant des concepts Ă©tablis en biologie Ă©volutive et systĂ©mique avec la cartographie d’interactions protĂ©iques et l’étude des mĂ©thodologies d’annotation de gĂ©nomes, j’ai dĂ©veloppĂ© de nouvelles approches bioinformatiques qui ont en partie dĂ©voilĂ© la composition et l’organisation des systĂšmes cellulaires de trois organismes eucaryotes : la levure de boulanger, le nĂ©matode Caenorhabditis elegans et la plante Arabidopsis thaliana. L’analyse de ces systĂšmes m’a conduit Ă  proposer des hypothĂšses sur les principes Ă©volutifs des systĂšmes biologiques. En premier lieu, je propose une thĂ©orie selon laquelle la traduction fortuite de rĂ©gions intergĂ©niques produirait des peptides sur lesquels la sĂ©lection naturelle agirait pour aboutir occasionnellement Ă  la crĂ©ation de protĂ©ines de novo. De plus, je montre que l’évolution de protĂ©ines apparues par duplication de gĂšnes est corrĂ©lĂ©e avec celle de leurs profils d’interactions. Enfin, j’ai mis en Ă©vidence des signatures de la co-Ă©volution ancestrale hĂŽte-pathogĂšne dans l’organisation topologique du rĂ©seau d‘interactions entre protĂ©ines de l’hĂŽte. Mes travaux confortent l’hypothĂšse que les systĂšmes molĂ©culaires Ă©voluent, eux aussi, de maniĂšre darwinienne

    Proto-genes and de novo gene birth.

    No full text

    From proteins and their interactions to evolutionary principles of biological systems

    No full text
    Darwin a rĂ©vĂ©lĂ© au monde que les espĂšces vivantes ne cessent jamais d’évoluer, mais les mĂ©canismes molĂ©culaires de cette Ă©volution restent le sujet de recherches intenses. La biologie systĂ©mique propose que les relations entre gĂ©notype, environnement et phĂ©notype soient sous-tendues par un ensemble de rĂ©seaux molĂ©culaires dynamiques au sein de la cellule, mais l’organisation de ces rĂ©seaux demeure mystĂ©rieuse. En combinant des concepts Ă©tablis en biologie Ă©volutive et systĂ©mique avec la cartographie d’interactions protĂ©iques et l’étude des mĂ©thodologies d’annotation de gĂ©nomes, j’ai dĂ©veloppĂ© de nouvelles approches bioinformatiques qui ont en partie dĂ©voilĂ© la composition et l’organisation des systĂšmes cellulaires de trois organismes eucaryotes : la levure de boulanger, le nĂ©matode Caenorhabditis elegans et la plante Arabidopsis thaliana. L’analyse de ces systĂšmes m’a conduit Ă  proposer des hypothĂšses sur les principes Ă©volutifs des systĂšmes biologiques. En premier lieu, je propose une thĂ©orie selon laquelle la traduction fortuite de rĂ©gions intergĂ©niques produirait des peptides sur lesquels la sĂ©lection naturelle agirait pour aboutir occasionnellement Ă  la crĂ©ation de protĂ©ines de novo. De plus, je montre que l’évolution de protĂ©ines apparues par duplication de gĂšnes est corrĂ©lĂ©e avec celle de leurs profils d’interactions. Enfin, j’ai mis en Ă©vidence des signatures de la co-Ă©volution ancestrale hĂŽte-pathogĂšne dans l’organisation topologique du rĂ©seau d‘interactions entre protĂ©ines de l’hĂŽte. Mes travaux confortent l’hypothĂšse que les systĂšmes molĂ©culaires Ă©voluent, eux aussi, de maniĂšre darwinienne.Darwin exposed to the world that living species continuously evolve. Yet the molecular mechanisms of evolution remain under intense research. Systems biology proposes that dynamic molecular networks underlie relationships between genotype, environment and phenotype, but the organization of these networks is mysterious. Combining established concepts from evolutionary and systems biology with protein interaction mapping and the study of genome annotation methodologies, I have developed new bioinformatics approaches that partially unveiled the composition and organization of cellular systems for three eukaryotic organisms: the baker’s yeast, the nematode Caenorhabditis elegans and the plant Arabidopsis thaliana. My analyses led to insights into the evolution of biological systems. First, I propose that the translation of peptides from intergenic regions could lead to de novo birth of new protein-coding genes. Second, I show that the evolution of proteins originating from gene duplications and of their physical interaction repertoires are tightly interrelated. Lastly, I uncover signatures of the ancestral host-pathogen co-evolution in the topology of a host protein interaction network. My PhD work supports the thesis that molecular systems also evolve in a Darwinian fashion

    Biological factors and statistical limitations prevent detection of most noncanonical proteins by mass spectrometry.

    No full text
    Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) outside of annotated protein-coding genes. However, shotgun mass spectrometry (MS) experiments typically detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not present in the cell; alternatively, it could reflect technical limitations. Here, we leveraged recent advances in ribosome profiling and MS to investigate the factors limiting detection of noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can largely be explained by small size and low translation levels and does not indicate that they are unstable or biologically insignificant. In particular, proteins encoded by evolutionarily young genes, including those with well-characterized biological roles, are too short and too lowly expressed to be detected by shotgun MS at current detection sensitivities. Additionally, we find that decoy biases can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false detections. After accounting for these issues, we found strong evidence for 4 noncanonical proteins in MS data, which were also supported by evolution and translation data. These results illustrate the power of MS to validate unannotated genes predicted by ribosome profiling, but also its substantial limitations in finding many biologically relevant lowly expressed proteins

    Evolutionary Characterization of the Short Protein SPAAR

    No full text
    Microproteins (de novo emergence from a noncoding sequence. By integrating syntenic alignments and homology searches, we identify SPAAR orthologs in marsupials and monotremes, establishing that SPAAR has existed at least since the emergence of mammals. SPAAR shows substantial primary sequence divergence but retains a conserved protein structure. In primates, we infer two independent evolutionary events leading to the de novo origination of 5â€Č elongated isoforms of SPAAR from a noncoding sequence and find evidence of adaptive evolution in this extended region. Thus, SPAAR may be of ancient origin, but it appears to be experiencing continual evolutionary innovation in mammals
    corecore