70 research outputs found

    Undersulfation of proteoglycans synthesized by chondrocytes from a patient with achondrogenesis type 1B homozygous for an L483P substitution in the diastrophic dysplasia sulfate transporter.

    Get PDF
    Achondrogenesis type 1B is an autosomal recessive, lethal chondrodysplasia caused by mutations in the gene encoding a sulfate/chloride antiporter of the cell membrane (Superti-Furga, A., Hastbacka, J., Wilcox, W. R., Cohn, D. H., van der Harten, J. J., Rossi, A., Blau, N., Rimoin, D. L., Steinmann, B., Lander, E. S., and Gitzelmann, R. (1996) Nat. Genet. 12, 100-102). To ascertain the consequences of the sulfate transport defect on proteoglycan synthesis, we studied the structure and sulfation of proteoglycans in cartilage tissue and in fibroblast and chondrocyte cultures from a fetus with achondrogenesis 1B. Proteoglycans extracted from epiphyseal cartilage and separated on agarose gels migrated more slowly than controls and stained poorly with alcian blue. The patient's cultured cells showed reduced incorporation of [35S]sulfate relative to [3H]glucosamine, impaired uptake of sulfate, and higher resistance to chromate toxicity compared to control cells. Epiphyseal chondrocytes cultured in alginate beads synthesized proteoglycans of normal molecular size as judged by gel filtration chromatography, but undersulfated as judged by ion exchange chromatography and by the amount of nonsulfated disaccharide. High performance liquid chromatography analysis of chondroitinase-digested proteoglycans showed that sulfated disaccharides were present, although in reduced amounts, indicating that at least in vitro, other sources of sulfate can partially compensate for sulfate deficiency. A t1475c transition causing a L483P substitution in the eleventh transmembrane domain of the sulfate/chloride antiporter was present on both alleles in the patient who was the product of a consanguineous marriage. The results indicate that the defect of sulfate transport is expressed in both chondrocytes and fibroblasts and results in the synthesis of proteoglycans bearing glycosaminoglycan chains which are poorly sulfated but of normal length

    Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions

    Get PDF
    Patients with Kallmann syndrome (KS) have hypogonadotropic hypogonadism caused by a deficiency of gonadotropin-releasing hormone (GnRH) and a defective sense of smell related to olfactory bulb aplasia. Based on the findings in a fetus affected by the X chromosome–linked form of the disease, it has been suggested that hypogonadism in KS results from the failed embryonic migration of neuroendocrine GnRH1 cells from the nasal epithelium to the forebrain. We asked whether this singular observation might extend to other developmental disorders that also include arrhinencephaly. We therefore studied the location of GnRH1 cells in fetuses affected by different arrhinencephalic disorders, specifically X-linked KS, CHARGE syndrome, trisomy 13, and trisomy 18, using immunohistochemistry. Few or no neuroendocrine GnRH1 cells were detected in the preoptic and hypothalamic regions of all arrhinencephalic fetuses, whereas large numbers of these cells were present in control fetuses. In all arrhinencephalic fetuses, many GnRH1 cells were present in the frontonasal region, the first part of their migratory path, as were interrupted olfactory nerve fibers that formed bilateral neuromas. Our findings define a pathological sequence whereby a lack of migration of neuroendocrine GnRH cells stems from the primary embryonic failure of peripheral olfactory structures. This can occur either alone, as in isolated KS, or as part of a pleiotropic disease, such as CHARGE syndrome, trisomy 13, and trisomy 18

    Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer's disease adults

    Get PDF
    Neuropathological conditions might affect adult granulogenesis in the adult human dentate gyrus. However, radial glial cells (RGCs) have not been well characterized during human development and aging. We have previously described progenitor and neuronal layer establishment in the hippocampal pyramidal layer and dentate gyrus from embryonic life until mid-gestation. Here, we describe RGC subtypes in the hippocampus from 13 gestational weeks (GW) to mid-gestation and characterize their evolution and the dynamics of neurogenesis from mid-gestation to adulthood in normal and Alzheimer's disease (AD) subjects. In the pyramidal ventricular zone (VZ), RGC density declined with neurogenesis from mid-gestation until the perinatal period. In the dentate area, morphologic and antigenic differences among RGCs were observed from early ages of development to adulthood. Density and proliferative capacity of dentate RGCs as well as neurogenesis were strongly reduced during childhood until 5 years, few DCX+ cells are seen in adults. The dentate gyrus of both control and AD individuals showed Nestin+ and/or GFAPδ+ cells displaying different morphologies. In conclusion, pools of morphologically, antigenically, and topographically diverse neural progenitor cells are present in the human hippocampus from early developmental stages until adulthood, including in AD patients, while their neurogenic potential seems negligible in the adult. Key words: adult neurogenesis, hippocampus, human fetal brain, neurogenesis, radial glial cell

    Lack of Renal 11 Beta-Hydroxysteroid Dehydrogenase Type 2 at Birth, a Targeted Temporal Window for Neonatal Glucocorticoid Action in Human and Mice

    Get PDF
    International audienceBackground Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. Methods Cortisol (F) and cortisone (E) concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity) and between plasma and urine in newborns (renal activity). Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. Results We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. Conclusions We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming

    MR imaging of fetal cerebral anomalies

    No full text
    Background. Prenatal diagnosis of fetal brain anomalies relies mainly upon ultrasonography. However, even in the most experienced hands, the technique has limitations for some difficult diagnoses. MRI is an excellent imaging modality for the paediatric and adult brain. Objective: To assess the value of prenatal MRI when a cerebral anomaly was detected by US and where the prognosis depended on the identification of other anomalies undetectable by US, or where fetuses were at risk for a CNS lesion even when the US was normal. Materials and methods. Four hundred prenatal MRI examinations were performed since 1988, and confirmed by postnatal follow-up or pathological examination. Two-thirds of the examinations were performed after 25 weeks of gestation, one-third between 21 and 26 weeks. Fetal immobilisation was obtained by maternal premedication with flunitrazepam, administered orally 1 h before the examination. The examinations were performed on 1.5 T scanners using one or two surface coils. Results. Prenatal MRI allowed the diagnosis of serious unsuspected lesions such as neuronal migration disorders, ischaemic and haemorrhagic lesions and the abnormalities observed in tuberous sclerosis. It helped to characterise ventricular dilatation and anomalies of the corpus callosum and of the posterior fossa. Conclusions. MRI is a valuable complementary tool when prenatal US is incomplete, doubtful or limited. Prenatal MRI is particularly useful for the detection of ischaemic and haemorrhagic lesions, neuronal migration disorders and tuberous sclerosis lesions. Detection of these associated anomalies worsens the fetal prognosis, has medico-legal implications and modifies obstetric management. Normal prenatal MRI does not exclude an anomaly.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore