88 research outputs found

    Cerebrospinal fluid catecholamines in Alzheimer's disease patients with and without biological disease

    Get PDF
    Noradrenergic and dopaminergic neurons are involved in cognitive functions, relate to behavioral and psychological symptoms in dementia and are affected in Alzheimer's disease (AD). Amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N) hallmarks the AD neuropathology. Today, the AT(N) pathophysiology can be assessed through biomarkers. Previous studies report cerebrospinal fluid (CSF) catecholamine concentrations in AD patients without biomarker refinement. We explored if CSF catecholamines relate to AD clinical presentation or neuropathology as reflected by CSF biomarkers. CSF catecholamines were analyzed in AD patients at the mild cognitive impairment (MCI; n = 54) or dementia stage (n = 240) and in cognitively unimpaired (n = 113). CSF biomarkers determined AT status and indicated synaptic damage (neurogranin). The AD patients (n = 294) had higher CSF noradrenaline and adrenaline concentrations, but lower dopamine concentrations compared to the cognitively unimpaired (n = 113). AD patients in the MCI and dementia stage of the disease had similar CSF catecholamine concentrations. In the CSF neurogranin positively associated with noradrenaline and adrenaline but not with dopamine. Adjusted regression analyses including AT status, CSF neurogranin, age, gender, and APOEε4 status verified the findings. In restricted analyses comparing A+T+ patients to A-T- cognitively unimpaired, the findings for CSF adrenaline remained significant (p < 0.001) but not for CSF noradrenaline (p = 0.07) and CSF dopamine (p = 0.33). There were no differences between A+T+ and A-T- cognitively unimpaired. Thus, we find alterations in CSF catecholamines in symptomatic AD and the CSF adrenergic transmitters to increase simultaneously with synaptic damage as indexed by CSF neurogranin

    Study Protocol: ASCRIBED: The impact of Acute SystematiC inflammation upon cerebRospinal fluId and blood BiomarkErs of brain inflammation and injury in Dementia: a study in acute hip fracture patients

    Get PDF
    Background: Hip fracture represents a substantial acute inflammatory trauma, which may constitute a significant insult to the degenerating brain. Research suggests that an injury of this kind can affect memory and thinking in the future but it is unclear whether, and how, inflammatory trauma injures the brain. The impact of Acute SystematiC inflammation upon cerebRospinal fluId and blood BiomarkErs of brain inflammation and injury in Dementia: a study in acute hip fracture patients (ASCRIBED) explores this relationship, to understand the effect of inflammation on the progression of dementia. Methods: This protocol describes a multi-centre sample collection observational study. The study utilises the unique opportunity provided by hip fracture operations undertaken via spinal anaesthesia to collect cerebrospinal fluid (CSF) and blood, to investigate the impact of acute brain inflammation caused by hip fracture on the exacerbation of dementia. We will recruit 200 hip fracture patients with a diagnosis or evidence of dementia; and 200 hip fracture patients without dementia. We will also recruit ‘Suitable informants’, individuals in regular contact with the patient, to provide further proxy evidence of a patient’s potential cognitive decline. We will compare these 400 samples with existing CSF and blood samples from a cohort of dementia patients who had not experienced a systemic inflammatory response due to injury. This will provide a comparison between patients with and without dementia who are suffering a systemic inflammatory response; with stable patients living with dementia. Discussion: We will test the hypothesis that hip fracture patients living with dementia show elevated markers of brain inflammation, as well as neuronal injury and Alzheimer-related plaque pathology, in comparison to (1) stable patients living with dementia and (2) hip fracture patients without dementia, as measured by biomarkers in CSF and blood. The findings will address the hypothesis that systemic inflammatory events can exacerbate underlying dementia and inform the search for new treatments targeting inflammation in dementia

    Higher concentrations of kynurenic acid in CSF are associated with the slower clinical progression of Alzheimer's disease

    Get PDF
    Introduction: The kynurenine pathway's (KP) malfunction is closely related to Alzheimer's disease (AD), for antagonistic kynurenic acid (KA) and agonistic quinolinic acid act on the N-methyl-D-aspartate receptor, a possible therapeutic target in treating AD. Methods: In our longitudinal case–control study, KP metabolites in the cerebrospinal fluid were analyzed in 311 patients with AD and 105 cognitively unimpaired controls. Results: Patients with AD exhibited higher concentrations of KA (β = 0.18, P < 0.01) and picolinic acid (β = 0.20, P < 0.01) than the controls. KA was positively associated with tau pathology (β = 0.29, P < 0.01), and a higher concentration of KA was associated with the slower progression of dementia. Discussion: The higher concentrations of neuroprotective metabolites KA and picolinic acid suggest that the activation of the KP's neuroprotective branch is an adaptive response in AD and may be a promising target for intervention and treatment.publishedVersio

    Mobility and associations with levels of cerebrospinal fluid amyloid β and tau in a memory clinic cohort

    Get PDF
    BackgroundMobility impairments, in terms of gait and balance, are common in persons with dementia. To explore this relationship further, we examined the associations between mobility and cerebrospinal fluid (CSF) core biomarkers for Alzheimer’s disease (AD).MethodsIn this cross-sectional study, we included 64 participants [two with subjective cognitive decline (SCD), 13 with mild cognitive impairment (MCI) and 49 with dementia] from a memory clinic. Mobility was examined using gait speed, Mini-Balance Evaluation Systems test (Mini-BESTest), Timed Up and Go (TUG), and TUG dual-task cost (TUG DTC). The CSF biomarkers included were amyloid-β 42 (Aβ42), total-tau (t-tau), and phospho tau (p-tau181). Associations between mobility and biomarkers were analyzed through correlations and multiple linear regression analyses adjusted for (1) age, sex, and comorbidity, and (2) SCD/MCI vs. dementia.ResultsAβ42 was significantly correlated with each of the mobility outcomes. In the adjusted multiple regression analyses, Aβ42 was significantly associated with Mini-BESTest and TUG in the fully adjusted model and with TUG DTC in step 1 of the adjusted model (adjusting for age, sex, and comorbidity). T-tau was only associated with TUG DTC in step 1 of the adjusted model. P-tau181 was not associated with any of the mobility outcomes in any of the analyses.ConclusionBetter performance on mobility outcomes were associated with higher levels of CSF Aβ42. The association was strongest between Aβ42 and Mini-BESTest, suggesting that dynamic balance might be closely related with AD-specific pathology

    Cohort profile: the Norwegian Registry of Persons Assessed for Cognitive Symptoms (NorCog) - a national research and quality registry with a biomaterial collection

    Get PDF
    Purpose: The Norwegian Registry of Persons Assessed for Cognitive Symptoms (NorCog) was established to harmonise and improve the quality of diagnostic practice across clinics assessing persons with cognitive symptoms in Norwegian specialist healthcare units and to establish a large research cohort with extensive clinical data. Participants: The registry recruits patients who are referred for assessment of cognitive symptoms and suspected dementia at outpatient clinics in Norwegian specialist healthcare units. In total, 18 120 patients have been included in NorCog during the period of 2009–2021. The average age at inclusion was 73.7 years. About half of the patients (46%) were diagnosed with dementia at the baseline assessment, 35% with mild cognitive impairment and 13% with no or subjective cognitive impairment; 7% received other specified diagnoses such as mood disorders. Findings to date: All patients have a detailed baseline characterisation involving lifestyle and demographic variables; activities of daily living; caregiver situation; medical history; medication; psychiatric, physical and neurological examinations; neurocognitive testing; blood laboratory work-up; and structural or functional brain imaging. Diagnoses are set according to standardised diagnostic criteria. The research biobank stores DNA and blood samples from 4000 patients as well as cerebrospinal fluid from 800 patients. Data from NorCog have been used in a wide range of research projects evaluating and validating dementia-related assessment tools, and identifying patient characteristics, symptoms, functioning and needs, as well as caregiver burden and requirement of available resources. Future plans: The finish date of NorCog was originally in 2029. In 2021, the registry’s legal basis was reformalised and NorCog got approval to collect and keep data for as long as is necessary to achieve the purpose of the registry. In 2022, the registry underwent major changes. Paper-based data collection was replaced with digital registration, and the number of variables collected was reduced. Future plans involve expanding the registry to include patients from primary care centres.publishedVersio

    Plasma Inflammatory Biomarkers Are Associated With Poststroke Cognitive Impairment: The Nor-COAST Study

    Get PDF
    Background: Inflammation is proposed to be involved in the pathogenesis of poststroke cognitive impairment. The aim of this study was to investigate associations between concentrations of systemic inflammatory biomarkers after ischemic stroke and poststroke cognitive impairment. Methods: The Nor-COAST study (Norwegian Cognitive Impairment After Stroke) is a prospective observational multicenter cohort study, including patients hospitalized with acute stroke between 2015 and 2017. Inflammatory biomarkers, including the TCC (terminal C5b-9 complement complex) and 20 cytokines, were analyzed in plasma, collected at baseline, 3-, and 18 months poststroke, using ELISA and a multiplex assay. Global cognitive outcome was assessed with the Montreal Cognitive Assessment (MoCA) scale. We investigated the associations between plasma inflammatory biomarkers at baseline and MoCA score at 3-, 18-, and 36-month follow-ups; the associations between inflammatory biomarkers at 3 months and MoCA score at 18- and 36-month follow-ups; and the association between these biomarkers at 18 months and MoCA score at 36-month follow-up. We used mixed linear regression adjusted for age and sex. Results: We included 455 survivors of ischemic stroke. Higher concentrations of 7 baseline biomarkers were significantly associated with lower MoCA score at 36 months; TCC, IL (interleukin)-6, and MIP (macrophage inflammatory protein)-1α were associated with MoCA at 3, 18, and 36 months (P<0.01). No biomarker at 3 months was significantly associated with MoCA score at either 18 or 36 months, whereas higher concentrations of 3 biomarkers at 18 months were associated with lower MoCA score at 36 months (P<0.01). TCC at baseline and IL-6 and MIP-1α measured both at baseline and 18 months were particularly strongly associated with MoCA (P<0.01). Conclusions: Higher concentrations of plasma inflammatory biomarkers were associated with lower MoCA scores up to 36 months poststroke. This was most pronounced for inflammatory biomarkers measured in the acute phase following stroke.publishedVersio

    Is long-bout sedentary behaviour associated with long-term glucose levels 3 months after acute ischaemic stroke? A prospective observational cohort study

    Get PDF
    Background and purpose Sedentary behaviour is a risk factor for vascular disease and stroke patients are more sedentary than their age-matched peers. The association with glucose levels, as a potential mediator, is unclear, and we have investigated the association between long-bout sedentary behaviour and long-term glucose levels in stroke survivors. Methods This study uses data from the Norwegian Cognitive Impairment After Stroke study, a multicentre cohort study. The patients were recruited at hospital admission for acute stroke, and the follow-up was done at the outpatient clinic. Sedentary behaviour—being in a sitting or reclining position—was registered 3 months after stroke using position transition data from the body-worn sensor activPAL attached to the unaffected thigh. A MATLAB script was developed to extract activity data from 08:00 to 10:00 for 4 days and to categorise the data into four bout-length categories. The primary outcome was glycated haemoglobin (HbA1c), analysed at 3 months. Regression models were used to analyse the association between HbA1c and sedentary behaviour in the whole population and stratified based on a diagnosis of diabetes mellitus (DM). Age, body mass index and the use of antidiabetic drugs were added as covariates into the models. Results From a total of 815 included patients, 379 patients fulfilled the inclusion criteria for this study. We found no association between time in sedentary behaviour and HbA1c in the whole stroke population. We found time in sedentary behaviour in bouts of ≥90 min to be associated with a higher HbA1c in patients with DM. Conclusion Long-bout sedentary time is associated with a higher HbA1c in patients with DM 3 months after ischaemic stroke. Future research should investigate the benefit of breaking up sedentary time as a secondary preventive measure.publishedVersio

    Working Memory Training in Amnestic and Non-amnestic Patients With Mild Cognitive Impairment: Preliminary Findings From Genotype Variants on Training Effects

    Get PDF
    Working memory training (WMT) effects may be modulated by mild cognitive impairment (MCI) subtypes, and variations in APOE-epsilon (APOE-ε) and LMX1A genotypes. Sixty-one individuals (41 men/20 women, mean age 66 years) diagnosed with MCI (31 amnestic/30 non-amnestic) and genotyped for APOE-ε and LMX1A completed 4 weeks/20–25 sessions of WMT. Cognitive functions were assessed before, 4 weeks and 16 weeks after WMT. Except for Processing Speed, the non-amnestic MCI group (naMCI) outperformed the amnestic MCI (aMCI) group in all cognitive domains across all time-points. At 4 weeks, working memory function improved in both groups (p < 0.0001), but at 16 weeks the effects only remained in the naMCI group. Better performance was found after training for the naMCI patients with LMX1A-AA genotype and for the APOE-ε4 carriers. Only the naMCI-APOE-ε4 group showed improved Executive Function at 16 weeks. WMT improved working memory and some non-trained cognitive functions in individuals with MCI. The naMCI group had greater training gain than aMCI group, especially in those with LMX1A-AA genotype and among APOE-ε4-carriers. Further research with larger sample sizes for the subgroups and longer follow-up evaluations is warranted.publishedVersio

    Adaptive Computerized Working Memory Training in Patients With Mild Cognitive Impairment. A Randomized Double-Blind Active Controlled Trial

    Get PDF
    ObjectiveWe investigated if a 5-week computerized adaptive working memory training program (Cogmed®) of 20 to 25 sessions would be effective in improving the working memory capacity and other neuropsychological functions compared to a non-adaptive working memory training program (active-controlled) in adult patients with mild cognitive impairment (MCI).MethodsThis randomized double-blinded active control trial included 68 individuals aged 43 to 88 years, 45 men and 23 women, who were diagnosed with MCI at four Memory clinics. The study sample was randomized by block randomization to either adaptive or non-adaptive computerized working memory training. All participants completed the training, and were assessed with a comprehensive neuropsychological test battery before the intervention, and at 1 and 4 months after training.ResultsCompared to the non-adaptive training group, the adaptive training group did not show significantly greater improvement on the main outcome of working memory performance at 1 and 4 months after training.ConclusionNo difference were found between the two types of training on the primary outcome of working memory, or on secondary outcomes of cognitive function domains, in this sample of MCI patients. Hence, the hypothesis that the adaptive training program would lead to greater improvements compared to the non-adaptive training program was not supported. Within group analyses was not performed due to the stringent RCT design
    • …
    corecore