112 research outputs found

    Longitudinal assessment of high blood pressure in children with nonalcoholic fatty liver disease.

    Get PDF
    ObjectiveNonalcoholic fatty liver disease (NAFLD) affects 9.6% of children and may put these children at elevated risk of high blood pressure and subsequent cardiovascular morbidity and mortality. Therefore, we sought to determine the prevalence of and risk factors for high blood pressure in children with NAFLD.MethodsCohort study performed by the NIDDK NASH Clinical Research Network. There were 484 children with NAFLD ages 2 to 17 at enrollment; 382 children were assessed both at enrollment and 48 weeks afterwards. The main outcomes were high blood pressure at baseline and persistent high blood pressure at both baseline and 48 weeks.ResultsPrevalence of high blood pressure at baseline was 35.8% and prevalence of persistent high blood pressure was 21.4%. Children with high blood pressure were significantly more likely to have worse steatosis than children without high blood pressure (mild 19.8% vs. 34.2%, moderate 35.0% vs. 30.7%, severe 45.2% vs. 35.1%; P = 0.003). Higher body mass index, low-density lipoprotein, and uric acid were independent risk factors for high blood pressure (Odds Ratios: 1.10 per kg/m2, 1.09 per 10 mg/dL, 1.25 per mg/dL, respectively). Compared to boys, girls with NAFLD were significantly more likely to have persistent high blood pressure (28.4% vs.18.9%; P = 0.05).ConclusionsIn conclusion, NAFLD is a common clinical problem that places children at substantial risk for high blood pressure, which may often go undiagnosed. Thus blood pressure evaluation, control, and monitoring should be an integral component of the clinical management of children with NAFLD

    Inclusion and Implementation of Socio-Economic Considerations in GMO Regulations: Needs and Recommendations

    Get PDF
    Socio-economic considerations are included in the regulatory frameworks on genetically modified organisms (GMOs) of many countries. This is a reflection of an increasing interest in and recognition of the necessity to consider a broader range of issues when conducting a GMO risk assessment. At the same time, there are discussions about how socio-economic considerations can be identified and how their assessment can be carried out. To provide an understanding of the advances achieved so far, we describe the state of the art of existing biosafety institutional frameworks, legislation and policies with provisions on socio-economic considerations. We analyse the scope of the socio-economic considerations that have been included, the methodological options taken and the role of participatory processes and stakeholders involvement in the GMO-related decision-making. Since many of the countries that have legislation for assessing socio-economic considerations lack implementation experience, we provide an analysis of how implementation has evolved in Norway with the intention to illustrate that the inclusion of socio-economic considerations might be based on a learning process. Norway was the first country to include broader issues in its GMO assessment process, and is at present one of the countries with the most experience on implementation of these issues. Finally, we emphasise that there is a great need for training on how to perform assessments of socio-economic considerations, as well as reflection on possible ways for inclusion of participatory processes

    Evaluation of high-resolution microarray platforms for genomic profiling of bone tumours

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several high-density oligonucleotide microarray platforms are available for genome-wide single nucleotide polymorphism (SNP) detection and microarray-based comparative genomic hybridisation (array CGH), which may be used to detect copy number aberrations in human tumours. As part of the EuroBoNeT network of excellence for research on bone tumours (eurobonet.eu), we have evaluated four different commercial high-resolution microarray platforms in order to identify the most appropriate technology for mapping DNA copy number aberrations in such tumours.</p> <p>Findings</p> <p>DNA from two different cytogenetically well-characterized bone sarcoma cell lines, representing a simple and a complex karyotype, respectively, was tested in duplicate on four high-resolution microarray platforms; Affymetrix Genome-Wide Human SNP Array 6.0, Agilent Human Genome CGH 244A, Illumina HumanExon510s-duo and Nimblegen HG18 CGH 385 k WG tiling v1.0. The data was analysed using the platform-specific analysis software, as well as a platform-independent analysis algorithm. DNA copy number was measured at six specific chromosomes or chromosomal regions, and compared with the expected ratio based on available cytogenetic information. All platforms performed well in terms of reproducibility and were able to delimit and score small amplifications and deletions at similar resolution, but Agilent microarrays showed better linearity and dynamic range. The platform-specific analysis software provided with each platform identified in general correct copy numbers, whereas using a platform-independent analysis algorithm, correct copy numbers were determined mainly for Agilent and Affymetrix microarrays.</p> <p>Conclusions</p> <p>All platforms performed reasonably well, but Agilent microarrays showed better dynamic range, and like Affymetrix microarrays performed well with the platform-independent analysis software, implying more robust data. Bone tumours like osteosarcomas are heterogeneous tumours with complex karyotypes that may be difficult to interpret, and it is of importance to be able to well separate the copy number levels and detect copy number changes in subpopulations. Taking all this into consideration, the Agilent and Affymetrix microarray platforms were found to be a better choice for mapping DNA copy numbers in bone tumours, the latter having the advantage of also providing heterozygosity information.</p

    Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH

    Get PDF
    BACKGROUND: Amplification of the q21-q23 region on chromosome 1 is frequently found in sarcomas and a variety of other solid tumours. Previous analyses of sarcomas have indicated the presence of at least two separate amplicons within this region, one located in 1q21 and one located near the apolipoprotein A-II (APOA2) gene in 1q23. In this study we have mapped and characterized the amplicon in 1q23 in more detail. RESULTS: We have used fluorescence in situ hybridisation (FISH) and microarray-based comparative genomic hybridisation (array CGH) to map and define the borders of the amplicon in 10 sarcomas. A subregion of approximately 800 kb was identified as the core of the amplicon. The amplification patterns of nine possible candidate target genes located to this subregion were determined by Southern blot analysis. The genes activating transcription factor 6 (ATF6) and dual specificity phosphatase 12 (DUSP12) showed the highest level of amplification, and they were also shown to be over-expressed by quantitative real-time reverse transcription PCR (RT-PCR). In general, the level of expression reflected the level of amplification in the different tumours. DUSP12 was expressed significantly higher than ATF6 in a subset of the tumours. In addition, two genes known to be transcriptionally activated by ATF6, glucose-regulated protein 78 kDa and -94 kDa (GRP78 and GRP94), were shown to be over-expressed in the tumours that showed over-expression of ATF6. CONCLUSION: ATF6 and DUSP12 seem to be the most likely candidate target genes for the 1q23 amplification in sarcomas. Both genes have possible roles in promoting cell growth, which makes them interesting candidate targets

    Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastatic progression due to development or enrichment of therapy-resistant tumor cells is eventually lethal. Molecular characterization of such chemotherapy resistant tumor cell clones may identify markers responsible for malignant progression and potential targets for new treatment. Here, in a case of stage IV adenocarcinoma of the gastroesophageal junction, we report the successful genome wide analysis using array comparative genomic hybridization (CGH) of DNA from only fourteen tumor cells using a bead-based single cell selection method from a bone metastasis progressing during chemotherapy.</p> <p>Case presentation</p> <p>In a case of metastatic adenocarcinoma of the gastroesophageal junction, the progression of bone metastasis was observed during a chemotherapy regimen of epirubicin, oxaliplatin and capecitabine, whereas lung-, liver and lymph node metastases as well as the primary tumor were regressing. A bone marrow aspirate sampled at the site of progressing metastasis in the right iliac bone was performed, and single cell molecular analysis using array-CGH of Epithelial Specific Antigen (ESA)-positive metastatic cells, and revealed two distinct regions of amplification, 12p12.1 and 17q12-q21.2 amplicons, containing the KRAS (12p) and ERBB2 (HER2/NEU) (17q) oncogenes. Further intrapatient tumor heterogeneity of these highlighted gene copy number changes was analyzed by fluorescence in situ hybridization (FISH) in all available primary and metastatic tumor biopsies, and ErbB2 protein expression was investigated by immunohistochemistry.</p> <p>ERBB2 was heterogeneously amplified by FISH analysis in the primary tumor, as well as liver and bone metastasis, but homogenously amplified in biopsy specimens from a progressing bone metastasis after three initial cycles of chemotherapy, indicating a possible enrichment of erbB2 positive tumor cells in the progressing bone marrow metastasis during chemotherapy. A similar amplification profile was detected for wild-type KRAS, although more heterogeneously expressed in the bone metastasis progressing on chemotherapy. Correspondingly, the erbB2 protein was found heterogeneously expressed by immunohistochemical staining of the primary tumor of the gastroesophageal junction, while negative in liver and bone metastases, but after three initial cycles of palliative chemotherapy with epirubicin, oxaliplatin and capecetabine, the representative bone metastasis stained strongly positive for erbB2.</p> <p>Conclusion</p> <p>Global analysis of genetic aberrations, as illustrated by performing array-CGH analysis on genomic DNA from only a few selected tumor cells of interest sampled from a progressing bone metastasis, can identify relevant therapeutic targets and genetic aberrations involved in malignant progression, thus emphasizing the importance and feasibility of this powerful tool on the road to more personalized cancer therapies in the future.</p

    Strategies and Future Opportunities for the Prevention, Diagnosis, and Management of Cow Milk Allergy

    Get PDF
    The prevalence of food allergy has increased over the last 20-30 years, including cow milk allergy (CMA) which is one of the most common causes of infant food allergy. International allergy experts met in 2019 to discuss broad topics in allergy prevention and management of CMA including current challenges and future opportunities. The highlights of the meeting combined with recently published developments are presented here. Primary prevention of CMA should start from pre-pregnancy with a focus on a healthy lifestyle and food diversity to ensure adequate transfer of inhibitory IgG- allergen immune complexes across the placenta especially in mothers with a history of allergic diseases and planned c-section delivery. For non-breastfed infants, there is controversy about the preventive role of partially hydrolyzed formulae (pHF) despite some evidence of health economic benefits among those with a family history of allergy. Clinical management of CMA consists of secondary prevention with a focus on the development of early oral tolerance. The use of extensive Hydrolysate Formulae (eHF) is the nutrition of choice for the majority of non-breastfed infants with CMA; potentially with pre-, probiotics and LCPUFA to support early oral tolerance induction. Future opportunities are, among others, pre- and probiotics supplementation for mothers and high-risk infants for the primary prevention of CMA. A controlled prospective study implementing a step-down milk formulae ladder with various degrees of hydrolysate is proposed for food challenges and early development of oral tolerance. This provides a more precise gradation of milk protein exposure than those currently recommended

    Bioestimulación láser en semillas y plantas

    Get PDF
    Different lasers have proven to be potentially useful to certain parameters of radiation and could benefit the establishment of planting in adverse conditions by UV-B radiation, drought, cold, salinity, pollution by cadmium, etc. This literature review shows the possible applications of lasers in recent years, as seed treatment and plants, emphasizing the use of He-Ne lasers, Ar, neodymium-YAG, CO2 and laser diodes. It is clear that applications of lasers to parameters specific irradiation of seeds and plants have become increasingly important because of the need to increase food production globally by methods that protect the environment and help to combat the effects of climate change and biodiversity conservation, improving the quality of human and animal life. Thus, in the International Year of “Light and light-based technologies,” it was important to become aware of possible potential use of laser light in agriculture because it could contribute to sustainable development and offering solutions to problems diverse. Advances that have found various scientists in the world provide evidence, thus, in the coming years could have a boom in its application in agriculture as an element “biostimulator” of seeds, seedlings and plants.Diversos láseres han demostrado ser potencialmente útiles a determinados parámetros de irradiación y podrían beneficiar el establecimiento de siembra en condiciones adversas por radiación UV-B, sequía, frío, salinidad, contaminación por cadmio, etc. Esta revisión de literatura científica exhibe las aplicaciones posibles de los láseres en los últimos años, como tratamiento de semillas y plantas, destacando el uso de los láseres de He-Ne, Ar, Neodimio-YAG, CO2 y los diodos láser. Es evidente que las aplicaciones de láseres a parámetros de irradiación específicos en semillas y plantas han adquirido cada vez mayor importancia debido a la necesidad de incrementar la producción de alimentos a nivel global mediante métodos que protejan el medio ambiente y contribuyan a combatir los efectos del cambio climático y a la conservación de la biodiversidad, mejorando la calidad de vida humana y animal. De esta manera, en este Año Internacional de “la Luz y las tecnologías basadas en la luz”, fue importante tomar conciencia del posible uso potencial de la luz láser en la agricultura, ya que podría coadyuvar a un desarrollo sostenible y ofrecer soluciones a problemáticas diversas. Los avances encontrados por diversos científicos lo evidencian y en los próximos años podría tener un auge en su aplicación en la agricultura como un elemento “bioestimulador” de semillas, plántulas y plantas

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO
    corecore