12 research outputs found

    Tree-ring-reconstructed summer temperatures from northwestern North America during the last nine centuries

    Get PDF
    Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate

    Tree-Ring-Reconstructed Summer Temperatures from Northwestern North America during the Last Nine Centuries*

    Get PDF
    Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate

    Causes and Consequences of Past and Projected Scandinavian Summer Temperatures, 500–2100 AD

    Get PDF
    Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood. Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern Scandinavia, establish a suite of 36 subset chronologies, and analyse their climate signal. A new reconstruction for the 1483–2006 period correlates at 0.80 with June–August temperatures back to 1860. Summer cooling during the early 17th century and peak warming in the 1930s translate into a decadal amplitude of 2.9°C, which agrees with existing Scandinavian tree-ring proxies. Climate model simulations reveal similar amounts of mid to low frequency variability, suggesting that internal ocean-atmosphere feedbacks likely influenced Scandinavian temperatures more than external forcing. Projected 21st century warming under the SRES A2 scenario would, however, exceed the reconstructed temperature envelope of the past 1,500 years

    Maximum July-September temperatures derived from tree-ring densities on the western Loess Plateau, China

    No full text
    Tree-ring densitometric studies conducted in semi-arid regions are exceedingly rare. In this study, we evaluate a new maximum latewood density chronology from a collection of Picea purpurea trees growing in semi-arid northwestern China for climatic reconstruction purposes. We find statistically significant correlations between annual maximum density variations and July-September maximum temperatures over the 1957-2014 calibration period. Using a linear model to transfer the density variations to temperature estimates, we then reconstruct maximum summer temperatures from 1840 to 2014. Statistical analyses and verification tests demonstrate that the resulting transfer function is both reliable and stable. The reconstructed temperature series shows strong inter-annual and decadal variability. Several extremely cool and warm years are apparent on an inter-annual scale, while three extended cool periods and a warm period are observed on a decadal scale. In addition, the reconstructed temperature series exhibits a pattern synchronous with that of the Indian monsoon index, as well as a moderate relationship to volcanic eruptions. This densitometric study reveals typical climatic variation characteristics and provides useful data for deepening our understanding of climate history in the semi-arid regions of China
    corecore