191 research outputs found
Important Trends in UCP3 Investigation
Membrane uncoupling protein 3 (UCP3), a member of the mitochondrial uncoupling protein family, was discovered in 1997. UCP3′s properties, such as its high homology to other mitochondrial carriers, especially to UCP2, its short lifetime and low specificity of UCP3 antibodies, have hindered progress in understanding its biological function and transport mechanism over decades. The abundance of UCP3 is highest in murine brown adipose tissue (BAT, 15.0 pmol/mg protein), compared to heart (2.7 pmol/mg protein) and the gastrocnemius muscle (1.7 pmol/mg protein), but it is still 400-fold lower than the abundance of UCP1, a biomarker for BAT. Investigation of UCP3 reconstituted in planar bilayer membranes revealed that it transports protons only when activated by fatty acids (FA). Although purine nucleotides (PN) inhibit UCP3-mediated transport, the molecular mechanism differs from that of UCP1. It remains a conundrum that two homologous proton-transporting proteins exist within the same tissue. Recently, we proposed that UCP3 abundance directly correlates with the degree of FA β-oxidation in cell metabolism. Further development in this field implies that UCP3 may have dual function in transporting substrates, which have yet to be identified, alongside protons. Evaluation of the literature with respect to UCP3 is a complex task because (i) UCP3 features are often extrapolated from its “twin” UCP2 without additional proof, and (ii) the specificity of antibodies against UCP3 used in studies is rarely evaluated. In this review, we primarily focus on recent findings obtained for UCP3 in biological and biomimetic systems
Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype
Abstract The aim of the present study was to establish mitochondrial cholesterol trafficking 18 kDa translocator protein (TSPO) as a potential therapeutic target, capable of increasing macrophage cholesterol efflux to (apo)lipoprotein acceptors. Expression and activity of TSPO in human (THP-1) macrophages were manipulated genetically and by the use of selective TSPO ligands
A Workplace Mindfulness Intervention May Be Associated With Improved Psychological Well-Being and Productivity. A Preliminary Field Study in a Company Setting
Background: Mindfulness trainings are increasingly offered in workplace environments in order to improve health and productivity. Whilst promising, there is limited research on the effectiveness of mindfulness interventions in workplace settings. Objective: To examine the feasibility and effectiveness of a Workplace Mindfulness Training (WMT) in terms of burnout, psychological well-being, organizational and team climate, and performance. Methods: This is a preliminary field study in four companies. Self-report questionnaires were administered up to a month before, at start of, and right at the end of the WMT, resulting in a pre-intervention and an intervention period. There was no separate control group. A total of 425 participants completed the surveys on the different time points. Linear mixed model analyses were used to analyze the data. Results: When comparing the intervention period with the pre-intervention period, significantly greater improvements were found in measures of burnout (mean difference = 0.3, p 0.8), moderate for well-being, burnout and perceived stress (d = 0.5-0.8), and ranged from low to moderate for organizational and team climate and personal performance (d = 0.2-0.8). Conclusion: These preliminary data suggest that compared to the pre-intervention period, the intervention period was associated with greater reductions in burnout and perceived stress, improvements in mindfulness, well-being, and increases in team and organizational climate and personal performance. Due to design limitations, no conclusions can be drawn on the extent to which the WMT or non-specific factors such as time have contributed to the findings. Further studies, preferably using randomized controlled designs with longer follow up periods are needed to evaluate whether the associations found can be attributed to the WMT and whether these sustain after the training
ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport
Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA’s transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s−1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion’s transport across the membrane. ANT’s dual function—ADP/ATP and H+ transport in the presence of FA—may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases
Pharmacological Alterations of Anxious Behaviour in Mice Depending on Both Strain and the Behavioural Situation
A previous study comparing non-emotive mice from the strain C57BL/6/ByJ with ABP/Le mice showed ABP/Le to be more anxious in an open-field situation. In the present study, several compounds affecting anxiety were assayed on ABP/Le and C57BL/6/ByJ mice using three behavioural models of anxiety: the elevated plus-maze, the light-dark discrimination test and the free exploratory paradigm. The compounds used were the full benzodiazepine receptor agonist, chlordiazepoxide, and the antagonist, flumazenil, the GABAA antagonist, bicuculline, the full 5-HT1A agonist 8-OH-DPAT, and the mixed 5-HT1A/5-HT1B agonist, RU 24969. Results showed the effect of the compounds to be dependent on both the strain and the behavioural task. Several compounds found to be anxiolytic in ABP/Le mice had an anxiogenic effect on C57BL/6/ByJ mice. More behavioural changes were observed for ABP/Le in the elevated plus-maze, but the clearest findings for C57BL/6/ByJ mice were observed in the light-dark discrimination apparatus. These data demonstrate that anxious behaviour is a complex phenomenon which cannot be described by a single behavioural task nor by the action of a single compound
Leveraging the Potential of Digital Technology for Personalised Medicine
editorial reviewedDigital device technologies, such as wearable gait sensors, voice and video recordings, bear potential for monitoring symptoms of chronic and increasingly prevalent diseases, such as Parkinson's Disease. This could facilitate a more personalised and higher quality treatment in the future. As part of the EU-wide project DIGIPD, we confirmed this potential using data from three different cohort studies in Luxembourg, France and Germany. Data processing using artificial intelligence allows inferring disease symptoms and their progression. We found that digital devices, which collect large amounts of data during use, are highly accepted by patients. There are, however, challenges to legally collect patient-level data and process them using artificial intelligence for research and medical development in the European Union. This report discusses this topic from the perspectives of physicians, data scientists, patients, and lawyers.Validating DIGItal biomarkers for better personalized treatment of Parkinson’s Diseas
RANTES/CCL5 and Risk for Coronary Events: Results from the MONICA/KORA Augsburg Case-Cohort, Athero-Express and CARDIoGRAM Studies
BACKGROUND: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events.
METHODS AND FINDINGS: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±4.8 years). Cox proportional hazard models adjusting for age, sex, body mass index, metabolic factors and lifestyle factors revealed no significant association between RANTES and incident coronary events (HR [95% CI] for increasing RANTES tertiles 1.0, 1.03 [0.75-1.42] and 1.11 [0.81-1.54]). None of six CCL5 single nucleotide polymorphisms and no common haplotype showed significant associations with coronary events. Also in the CARDIoGRAM study (>22,000 cases, >60,000 controls), none of these CCL5 SNPs was significantly associated with coronary artery disease. In the prospective Athero-Express biobank study, RANTES plaque levels were measured in 606 atherosclerotic lesions from patients who underwent carotid endarterectomy. RANTES content in atherosclerotic plaques was positively associated with macrophage infiltration and inversely associated with plaque calcification. However, there was no significant association between RANTES content in plaques and risk for coronary events (mean follow-up 2.8±0.8 years).
CONCLUSIONS: High RANTES plaque levels were associated with an unstable plaque phenotype. However, the absence of associations between (i) RANTES serum levels, (ii) CCL5 genotypes and (iii) RANTES content in carotid plaques and either coronary artery disease or incident coronary events in our cohorts suggests that RANTES may not be a novel coronary risk biomarker. However, the potential relevance of RANTES levels in platelet-poor plasma needs to be investigated in further studies
RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies
Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±
- …