32 research outputs found

    Harmonising plant functional type distributions for evaluating Earth system models

    Get PDF
    Dynamic vegetation models simulate global vegetation in terms of fractional coverage of a few plant functional types (PFTs). Although these models often share the same concept, they differ with respect to the number and kind of PFTs, complicating the comparability of simulated vegetation distributions. Pollen-based vegetation reconstructions are initially only available in the form of time series of individual taxa that are not distinguished in the models. Thus, to evaluate simulated vegetation distributions, the modelling results and pollen-based vegetation reconstructions have to be converted into a comparable format. The classical approach is the method of biomisation, but hitherto PFT-based biomisation methods were only available for individual models. We introduce and evaluate a simple, universally applicable technique to harmonise PFT distributions by assigning them into nine mega-biomes, using only assumptions on the minimum PFT cover fractions and few bioclimatic constraints (based on the 2 m temperature). These constraints mainly follow the limitation rules used in the classical biome models (here BIOME4). We test the method for six state-of-the-art dynamic vegetation models that are included in Earth system models based on pre-industrial, mid-Holocene and Last Glacial Maximum simulations. The method works well, independent of the spatial resolution or the complexity of the models. Large biome belts (such as tropical forest) are generally better represented than regionally confined biomes (warm–temperate forest, savanna). The comparison with biome distributions inferred via the classical biomisation approach of forcing biome models (here BIOME1) with the simulated climate states shows that the PFT-based biomisation is even able to keep up with the classical method. However, as the new method considers the PFT distributions actually calculated by the Earth system models, it allows for a direct comparison and evaluation of simulated vegetation distributions which the classical method cannot do. Thereby, the new method provides a powerful tool for the evaluation of Earth system models in general

    Harmonizing plant functional type distributions for evaluating Earth System Models

    Get PDF
    Dynamic vegetation models simulate global vegetation in terms of fractional coverages of a few plant functional types (PFTs). Although these models often share the same concept, they differ with respect to the number and kind of PFTs, complicating the comparability of simulated vegetation distributions. Pollen-based reconstructions are initially only available in form of time-series of individual taxa that are not distinguished in the models. Thus, to evaluate simulated vegetation distributions, the modelling results and pollen-based reconstructions have to be converted into a comparable format. The classical approach is the method of biomisation, but hitherto, PFT-based biomisation methods were only available for individual models. We introduce and evaluate a simple, universally applicable technique to harmonize PFT-distributions by assigning them into nine mega-biomes that follow the definitions commonly used for vegetation reconstructions. The method works well for all state-of the art dynamic vegetation models, independent of the spatial resolution or the complexity of the models. Large biome belts (such as tropical forest) are well represented, but regionally confined biomes (warm-mixed forest, Savanna) are only partly captured. Overall, the PFT-based biomisation is able to keep up with the conventional biomisation approach of forcing biome models (here: BIOME1) with the background climate states. The new method has, however, the advantage that it allows a more direct comparison and evaluation of the vegetation distributions simulated by Earth System Models. Thereby, the new method provides a powerful tool for the evaluation of Earth System Models in general

    Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2

    Get PDF
    We present a transient simulation of global vegetation and climate patterns of the mid- and late-Holocene using the MPI-ESM (Max Planck Institute for Meteorology Earth System Model) at T63 resolution. The simulated vegetation trend is discussed in the context of the simulated Holocene climate change. Our model captures the main trends found in reconstructions. Most prominent are the southward retreat of the northern treeline that is combined with the strong decrease of forest in the high northern latitudes during the Holocene and the vast increase of the Saharan desert, embedded in a general decrease in precipitation and vegetation in the northern hemispheric monsoon margin regions. The southern hemisphere experiences weaker changes in total vegetation cover during the last 8000 years. However, the monsoon-related increase in precipitation and the insolation-induced cooling of the winter climate lead to shifts in the vegetation composition, mainly between the woody plant functional types (PFTs). The large-scale global patterns of vegetation almost linearly follow the subtle, approximately linear, orbital forcing. In some regions, however, non-linear, more rapid changes in vegetation are found in the simulation. The most striking region is the Sahel-Sahara domain with rapid vegetation transitions to a rather desertic state, despite a gradual insolation forcing. Rapid shifts in the simulated vegetation also occur in the high northern latitudes, in South Asia and in the monsoon margins of the southern hemisphere. These rapid changes are mainly triggered by changes in the winter temperatures, which go into, or move out of, the bioclimatic tolerance range of individual PFTs (Plant Functional Types). The dynamics of the transitions are determined by dynamics of the Net Primary Production (NPP) and the competition between PFTs. These changes mainly occur on timescales of centuries. More rapid changes in PFTs that occur within a few decades are mainly associated with the time scales of mortality and the bioclimatic thresholds implicit in the dynamic vegetation model, which have to be interpreted with caution. Most of the simulated Holocene vegetation changes outside the high northern latitudes are associated with modifications in the intensity of the global summer monsoon dynamics that also affect the circulation in the extra tropics via teleconnections. Based on our simulations, we thus identify the global monsoons as the key player in Holocene climate and vegetation change

    Were climatic forcings the main driver for mid-holocene changes in settlement dynamics on the Varamin Plain (Central Iranian Plateau)?

    Get PDF
    Settlement crises in ancient cultures of Western Asia are commonly thought to be caused by climatic events such as severe droughts. However, the insufficient climate proxy situation in this region challenges the inference of clear relationships between climate and settlement dynamics. We investigate the Holocene climatic changes on the Varamin Plain in the context of the climatic history of Western Central Asia by using a transient comprehensive Earth System Model simulation (8 ka BP to pre-industrial), a high-resolution regional snapshot simulation and a synthesis of pollen-based climate reconstructions. In line with the reconstructions, the models reveal only slightly varying mean climatic conditions on the Varamin Plain but indicate substantial changes in seasonality during the Holocene. Increased precipitation during spring, combined with lower temperature and potentially stronger snow accumulation on the upstream Alborz mountains may have led to an increased water supply on the alluvial fan during the vegetation period and thus to more favourable conditions for agricultural production during the Mid-Holocene compared to modern times. According to the model, dry periods on the Central Iranian Plateau are related to particularly weak Westerly winds, fostering the subsidence in the mid-troposphere and hampering precipitation over the region. The model reveals that dry periods have spatially heterogenous manifestations, thus explaining why they do not appear in all proxy records in the wider study region. In fact, the climatic signal may depend on local environmental conditions. The interaction of the topography with the atmospheric circulation leads to additional spatial heterogeneity. Although our results provide several indications for a connection between climate and settlement dynamics, the small overall changes in moisture call into question whether climate is the main driver for settlement discontinuities on the Central Iranian Plateau. To shed further light on this issue, more high-resolution long-term proxy records are needed

    Reversals in Temperature-Precipitation Correlations in the Northern Hemisphere Extratropics During the Holocene

    Get PDF
    Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature-precipitation correlations. Our analyses of Holocene proxy-based temperature-precipitation correlations and hydrological sensitivities from 2,237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy-based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid-latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature-precipitation correlations in the eastern North American and European mid-latitudes from the early to mid-Holocene that mainly related to slowed down westerlies and a switch to moisture-limited convection under a warm climate. Our palaeoevidence of past temperature-precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging.publishedVersio

    Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends

    Get PDF
    A mismatch between model- and proxy-based Holocene climate change, known as the “Holocene conundrum”, may partially originate from the poor spatial coverage of climate reconstructions in, for example, Asia, limiting the number of grid cells for model–data comparisons. Here we investigate hemispheric, latitudinal, and regional mean time series and time-slice anomaly maps of pollen-based reconstructions of mean annual temperature, mean July temperature, and annual precipitation from 1908 records in the Northern Hemisphere extratropics. Temperature trends show strong latitudinal patterns and differ between (sub-)continents. While the circum-Atlantic regions in Europe and eastern North America show a pronounced Middle Holocene temperature maximum, western North America shows only weak changes, and Asia mostly shows a continuous Holocene temperature increase. Likewise, precipitation trends show certain regional peculiarities such as the pronounced Middle Holocene precipitation maximum between 40 and 50∘ N in Asia and Holocene increasing trends in Europe and western North America, which can all be linked with Holocene changes in the regional circulation pattern responding to temperature change. Given a background of strong regional heterogeneity, we conclude that the calculation of global or hemispheric means, which initiated the Holocene conundrum debate, should focus more on understanding the spatiotemporal patterns and their regional drivers

    The deglacial forest conundrum

    Get PDF
    How fast the Northern Hemisphere (NH) forest biome tracks strongly warming climates is largely unknown. Regional studies reveal lags between decades and millennia. Here we report a conundrum: Deglacial forest expansion in the NH extra-tropics occurs approximately 4000 years earlier in a transient MPI-ESM1.2 simulation than shown by pollen-based biome reconstructions. Shortcomings in the model and the reconstructions could both contribute to this mismatch, leaving the underlying causes unresolved. The simulated vegetation responds within decades to simulated climate changes, which agree with pollen-independent reconstructions. Thus, we can exclude climate biases as main driver for differences. Instead, the mismatch points at a multi-millennial disequilibrium of the NH forest biome to the climate signal. Therefore, the evaluation of time-slice simulations in strongly changing climates with pollen records should be critically reassessed. Our results imply that NH forests may be responding much slower to ongoing climate changes than Earth System Models predict

    LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond

    Get PDF
    Here we describe LegacyClimate 1.0, a dataset of the reconstruction of the mean July temperature (TJuly), mean annual temperature (Tann), and annual precipitation (Pann) from 2594 fossil pollen records from the Northern Hemisphere, spanning the entire Holocene, with some records reaching back to the Last Glacial Period. Two reconstruction methods, the modern analog technique (MAT) and weighted averaging partial least squares regression (WA-PLS), reveal similar results regarding spatial and temporal patterns. To reduce the impact of precipitation on temperature reconstruction, and vice versa, we also provide reconstructions using tailored modern pollen data, limiting the range of the corresponding other climate variables. We assess the reliability of the reconstructions, using information from the spatial distributions of the root mean squared error in the prediction and reconstruction significance tests. The dataset is beneficial for synthesis studies of proxy-based reconstructions and to evaluate the output of climate models and thus help to improve the models themselves. We provide our compilation of reconstructed TJuly, Tann, and Pann as open-access datasets at PANGAEA (https://doi.org/10.1594/PANGAEA.930512; Herzschuh et al., 2023a). The R code for the reconstructions is provided at Zenodo (https://doi.org/10.5281/zenodo.7887565; Herzschuh et al., 2023b), including the harmonized open-access modern and fossil datasets used for the reconstructions, so that customized reconstructions can be easily established

    Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities

    Get PDF
    We present a calibration-set based on modern pollen and satellite-based Advanced Very High Resolution Radiometer (AVHRR) observations of woody cover (including needleleaved, broadleaved and total tree cover) in eastern continental Asia, which shows good performance under cross-validation with the modern analogue technique (all the coefficients of determination between observed and predicted values are greater than 0.65). The calibration-set is used to reconstruct woody cover from a taxonomically harmonized and temporally standardized fossil pollen dataset (including 274 cores) with 500-year resolution over the last 22 kyr. The spatial range of forest has not noticeably changed in eastern continental Asia during the last 22 kyr, although woody cover has, especially at the margin of the eastern Tibetan Plateau and in the forest-steppe transition area of north-central China. Vegetation was sparse during the LGM in the present forested regions, but woody cover increased markedly at the beginning of the BĂžlling/AllerĂžd period (B/A; ca. 14.5 ka bp) and again at the beginning of the Holocene (ca. 11.5 ka bp), and is related to the enhanced strength of the East Asian Summer Monsoon. Forest flourished in the mid-Holocene (ca. 8 ka bp) possibly due to favourable climatic conditions. In contrast, cover was stable in southern China (high cover) and arid central Asia (very low cover) throughout the investigated period. Forest cover increased in the north-eastern part of China during the Holocene. Comparisons of these regional pollen-based results with simulated forest cover from runs of a global climate model (for 9, 6 and 0 ka bp (ECHAM5/JSBACH ∌1.125° spatial resolution)) reveal many similarities in temporal change. The Holocene woody cover history of eastern continental Asia is different from that of other regions, likely controlled by different climatic variables, i.e. moisture in eastern continental Asia; temperature in northern Eurasia and North America

    LegacyClimate 1.0: A dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the late Quaternary

    Get PDF
    Here we describe the LegacyClimate 1.0, a dataset of the reconstruction of mean July temperature (TJuly), mean annual temperature (Tann), and annual precipitation (Pann) from 2594 fossil pollen records from the Northern Hemisphere spanning the entire Holocene with some records reaching back to the Last Glacial. Two reconstruction methods, the Modern Analogue Technique (MAT) and Weighted-Averaging Partial-Least Squares regression (WA-PLS) reveal similar results regarding spatial and temporal patterns. To reduce the impact of precipitation on temperature reconstruction and vice versa, we also provide reconstructions using tailored modern pollen data limiting the range of the corresponding other climate variables. We assess the reliability of the reconstructions using information from the spatial distributions of the root-mean squared error of prediction and reconstruction significance tests. The dataset is beneficial for climate proxy synthesis studies and to evaluate the output of climate models and thus help to improve the models themselves. We provide our compilation of reconstructed TJuly, Tann, and Pann as open-access datasets at PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.930512; Herzschuh et al., 2021). R code for the reconstructions is provided at Zenodo (https://doi.org/10.5281/zenodo.5910989; Herzschuh et al., 2022), including harmonized open-access modern and fossil datasets used for the reconstructions, so that customized reconstructions can be easily established
    corecore