243 research outputs found

    International initiative for a curated SDHB variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma

    Get PDF
    Adrenal gland diseases; Databases; Genetic variationEnfermedades de las glándulas suprarrenales; Bases de datos; Variación genéticaMalalties de les glàndules suprarenals; Bases de dades; Variació genèticaBackground SDHB is one of the major genes predisposing to paraganglioma/pheochromocytoma (PPGL). Identifying pathogenic SDHB variants in patients with PPGL is essential to the management of patients and relatives due to the increased risk of recurrences, metastases and the emergence of non-PPGL tumours. In this context, the ‘NGS and PPGL (NGSnPPGL) Study Group’ initiated an international effort to collect, annotate and classify SDHB variants and to provide an accurate, expert-curated and freely available SDHB variant database. Methods A total of 223 distinct SDHB variants from 737 patients were collected worldwide. Using multiple criteria, each variant was first classified according to a 5-tier grouping based on American College of Medical Genetics and NGSnPPGL standardised recommendations and was then manually reviewed by a panel of experts in the field. Results This multistep process resulted in 23 benign/likely benign, 149 pathogenic/likely pathogenic variants and 51 variants of unknown significance (VUS). Expert curation reduced by half the number of variants initially classified as VUS. Variant classifications are publicly accessible via the Leiden Open Variation Database system (https://databases.lovd.nl/shared/genes/SDHB). Conclusion This international initiative by a panel of experts allowed us to establish a consensus classification for 223 SDHB variants that should be used as a routine tool by geneticists in charge of PPGL laboratory diagnosis. This accurate classification of SDHB genetic variants will help to clarify the diagnosis of hereditary PPGL and to improve the clinical care of patients and relatives with PPGL.This work was supported in part by a salary grant to NB from Cancer Research for PErsonalized Medicine (CARPEM). ERM acknowledges funding from the European Research Council (Advanced Researcher Award), NIHR (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre) and Cancer Research UK Cambridge Cancer Centre. The University of Cambridge has received salary support in respect of ERM from the NHS in the East of England through the Clinical Academic Reserve. PLD receives support from the National Institutes of Health (NIH)-National Institute of General Medical Science (NIGMS) GM114102, NIH-National Center for Advancing Translational Science (NCATS) Clinical Translational Science Award (CTSA) UL1 TR001120 and UL1 TR002645, the Mays Cancer Center NIH-National Cancer Institute (NCI) P30 CA54174, Alex’s Lemonade Childhood Foundation, with support from Northwest Mutual and Flashes of Hope, and University of Texas Health SystemSTARS Award. RAT holds a Miguel Servet-I research contract by Institute of Health Carlos III (ISCIII) of the Ministry of Economy (CP17/00199) and Competitiveness; is supported by an Olga Torres Foundation Emerging researcher grant and by the Swiss Bridge Award for cancer immunotherapy research; and received research grants from BeiGene, Novartis and AstraZeneca. Cancer Genetics, Kolling Institute, Sydney acknowledges support from the Hillcrest Foundation (Perpetual Trustees). JPB in Leiden, The Netherlands acknowledges support from the Paradifference Foundation. MR is supported by the Instituto de Salud Carlos III (ISCIII), Acción Estratégica en Salud, cofounded by FEDER (grant number PI17/01796)

    Decreased lung fibroblast growth factor 18 and elastin in human congenital diaphragmatic hernia and animal models.

    Get PDF
    International audienceRATIONALE: Lung hypoplasia in congenital diaphragmatic hernia (CDH) seems to involve impaired alveolar septation. We hypothesized that disturbed deposition of elastin and expression of fibroblast growth factor 18 (FGF18), an elastogenesis stimulus, occurs in CDH. OBJECTIVES: To document FGF18 and elastin in human CDH and ovine surgical and rat nitrofen models and to use models to evaluate the benefit of treatments. METHODS: Human CDH and control lungs were collected post mortem. Diaphragmatic hernia was created in sheep at 85 days; fetal lungs were collected at 139 days (term = 145 days). Pregnant rats received nitrofen at 12 days; fetal lungs were collected at 21 days (term = 22 days). Some of the sheep fetuses with hernia underwent tracheal occlusion (TO); some of the nitrofen-treated pregnant rats received vitamin A. Both treatments are known to promote lung growth. MEASUREMENTS AND MAIN RESULTS: Coincidental with the onset of secondary septation, FGF18 protein increased threefold in control human lungs, which failed to occur in CDH. FGF18 labeling was found in interstitial cells of septa. Elastin staining demonstrated poor septation and markedly decreased elastin density in CDH lungs. Consistently, lung FGF18 transcripts were diminished 60 and 83% by CDH in sheep and rats, respectively, and elastin density and expression were diminished. TO and vitamin A restored FGF18 and elastin expression in sheep and rats, respectively. TO restored elastin density. CONCLUSIONS: Impaired septation in CDH is associated with decreased FGF18 expression and elastic fiber deposition. Simultaneous correction of FGF18 and elastin defects by TO and vitamin A suggests that defective elastogenesis may result, at least partly, from FGF18 deficiency

    Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription

    Get PDF
    Overactivation of the cAMP signal transduction pathway plays a central role in the pathogenesis of endocrine tumors. Genetic aberrations leading to increased intracellular cAMP or directly affecting PKA subunit expression have been identified in inherited and sporadic endocrine tumors, but are rare indicating the presence of nongenomic pathological PKA activation. In the present study, we examined the impact of hypoxia on PKA activation using human growth hormone (GH)-secreting pituitary tumors as a model of an endocrine disease displaying PKA-CREB overactivation. We show that hypoxia activates PKA and enhances CREB transcriptional activity and subsequently GH oversecretion. This is due to a previously uncharacterized ability of HIF-1α to suppress the transcription of the PKA regulatory subunit 2B (PRKAR2B) by sequestering Sp1 from the PRKAR2B promoter. The present study reveals a novel mechanism through which the transcription factor HIF-1α transduces environmental signals directly onto PKA activity, without affecting intracellular cAMP concentrations. By identifying a point of interaction between the cellular microenvironment and intracellular enzyme activation, neoplastic, and nonneoplastic diseases involving overactivated PKA pathway may be more efficiently targeted

    Mutations in the aryl hydrocarbon receptor interacting protein gene are not highly prevalent among subjects with sporadic pituitary adenomas.

    Full text link
    CONTEXT: Limited screening suggests that three germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene are not involved in sporadic pituitary tumorigenesis. Multiple novel mutations of this gene have since been identified in familial isolated pituitary adenoma cohorts. OBJECTIVE: The objective of the study was to undertake full AIP coding sequence screening to assess for the presence of germline and somatic mutations in European Union subjects with sporadic pituitary tumors. DESIGN: The study design was the analysis of DNA from peripheral blood lymphocytes and analysis of exons 1-6 and paraexonic intron sequences of AIP. Multiplex ligation-dependent probe amplification was used to screen separate sporadic pituitary tumor tissue samples for discrete and extensive deletions or mutations of the AIP gene. Setting: The study was conducted in university tertiary referral Clinical Genetics, Molecular Biology, and Endocrinology Departments. RESULTS: In 107 patients [prolactinomas (n =49), nonfunctioning tumors (n = 29), somatotropinomas (n = 26), ACTH-secreting tumors (n = 2), TSH-secreting tumors (n = 1)], no germline mutations of AIP were demonstrated. Among a group of 41 tumor samples from other subjects, a novel AIP mutation (R22X) was found in one sample in which the corresponding allele was deleted; follow-up screening of the patient demonstrated a germline R22X AIP mutation. CONCLUSIONS: AIP mutations do not appear to play a prominent role in sporadic pituitary tumorigenesis in this population of European subjects

    Identifying the Deleterious Effect of Rare LHX4 Allelic Variants, a Challenging Issue

    No full text
    International audienceLHX4 is a LIM homeodomain transcription factor involved in the early steps of pituitary ontogenesis. To date, 8 heterozygous LHX4 mutations have been reported as responsible of combined pituitary hormone deficiency (CPHD) in Humans. We identified 4 new LHX4 heterozygous allelic variants in patients with congenital hypopituitarism: W204X, delK242, N271S and Q346R. Our objective was to determine the role of LHX4 variants in patients' phenotypes. Heterologous HEK293T cells were transfected with plasmids encoding for wild-type or mutant LHX4. Protein expression was analysed by Western Blot, and DNA binding by electro-mobility shift assay experiments. Target promoters of LHX4 were cotransfected with wild type or mutant LHX4 to test the transactivating abilities of each variant. Our results show that the W204X mutation was associated with early GH and TSH deficiencies and later onset ACTH deficiency. It led to a truncated protein unable to bind to alpha-Gsu promoter binding consensus sequence. W204X was not able to activate target promoters in vitro. Cotransfection experiments did not favour a dominant negative effect. In contrast, all other mutants were able to bind the promoters and led to an activation similar as that observed with wild type LHX4, suggesting that they were likely polymorphisms. To conclude, our study underlines the need for functional in vitro studies to ascertain the role of rare allelic variants of LHX4 in disease phenotypes. It supports the causative role of the W204X mutation in CPHD and adds up childhood onset ACTH deficiency to the clinical spectrum of the various phenotypes related to LHX4 mutations

    Anti-proliferative and anti-secretory effects of everolimus on human pancreatic neuroendocrine tumors primary cultures: is there any benefit from combination with somatostatin analogs?

    Get PDF
    Therapeutic management of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) is challenging. The mammalian target of rapamycin (mTOR) inhibitor everolimus recently obtained approval from the Food and Drug Administration for the treatment of patients with advanced pancreatic neuroendocrine tumors (pNETs). Despite its promising antitumor efficacy observed in cell lines, clinical benefit for patients is unsatisfactory. The limited therapeutic potential of everolimus in cancer cells has been attributed to Akt activation due to feedback loops relief following mTOR inhibition. Combined inhibition of Akt might then improve everolimus antitumoral effect. In this regard, the somatostatin analog (SSA) octreotide has been shown to repress the PI3K/Akt pathway in some tumor cell lines. Moreover, SSAs are well tolerated and routinely used to reduce symptoms caused by peptide release in patients carrying functional GEP-NETs. We have recently established and characterized primary cultures of human pNETs and demonstrated the anti-proliferative effects of both octreotide and pasireotide. In this study, we aim at determining the antitumor efficacy of everolimus alone or in combination with the SSAs octreotide and pasireotide in primary cultures of pNETs. Everolimus reduced both Chromogranin A secretion and cell viability and upregulated Akt activity in single treatment. Its anti-proliferative and anti-secretory efficacy was not improved combined with the SSAs. Both SSAs did not overcome everolimus-induced Akt upregulation. Furthermore, caspase-dependent apoptosis induced by SSAs was lost in combined treatments. These molecular events provide the first evidence supporting the lack of marked benefit in patients co-treated with everolimus and SSA

    Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications.

    Full text link
    peer reviewedaudience: researcher, professionalGermline mutations of the aryl hydrocarbon receptor (AHR)-interacting protein (AIP) gene confer a predisposition to pituitary adenomas (PA), usually in the setting of familial isolated PA. To provide further insights into the possible role of AIP in pituitary tumour pathogenesis, the expression of AIP and AHR was determined by real-time RT-PCR and/or immunohistochemistry (IHC) in a large series of PA (n=103), including 17 with AIP mutations (AIP(mut)). Variable levels of AIP and AHR transcripts were detected in all PA, with a low AHR expression (P<0.0001 versus AIP). Cytoplasmic AIP and AHR were detected by IHC in 84.0 and 38.6% of PA respectively, and significantly correlated with each other (P=0.006). Nuclear AHR was detected in a minority of PA (19.7%). The highest AIP expression was observed in somatotrophinomas and non-secreting (NS) PA, and multivariate analysis in somatotrophinomas showed a significantly lower AIP immunostaining in invasive versus non-invasive cases (P=0.019). AIP expression was commonly low in other secreting PA. AIP immunostaining was abolished in a minority of AIP(mut) PA, with a frequent loss of cytoplasmic AHR and no evidence of nuclear AHR. In contrast, AIP overexpression in a subset of NS PA could be accompanied by nuclear AHR immunopositivity. We conclude that down-regulation of AIP and AHR may be involved in the aggressiveness of somatotrophinomas. Overall, IHC is a poorly sensitive tool for the screening of AIP mutations. Data obtained on AHR expression suggest that AHR signalling may be differentially affected according to PA phenotype

    Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications.

    Full text link
    Germline mutations of the aryl hydrocarbon receptor (AHR)-interacting protein (AIP) gene confer a predisposition to pituitary adenomas (PA), usually in the setting of familial isolated PA. To provide further insights into the possible role of AIP in pituitary tumour pathogenesis, the expression of AIP and AHR was determined by real-time RT-PCR and/or immunohistochemistry (IHC) in a large series of PA (n=103), including 17 with AIP mutations (AIP(mut)). Variable levels of AIP and AHR transcripts were detected in all PA, with a low AHR expression (P<0.0001 versus AIP). Cytoplasmic AIP and AHR were detected by IHC in 84.0 and 38.6% of PA respectively, and significantly correlated with each other (P=0.006). Nuclear AHR was detected in a minority of PA (19.7%). The highest AIP expression was observed in somatotrophinomas and non-secreting (NS) PA, and multivariate analysis in somatotrophinomas showed a significantly lower AIP immunostaining in invasive versus non-invasive cases (P=0.019). AIP expression was commonly low in other secreting PA. AIP immunostaining was abolished in a minority of AIP(mut) PA, with a frequent loss of cytoplasmic AHR and no evidence of nuclear AHR. In contrast, AIP overexpression in a subset of NS PA could be accompanied by nuclear AHR immunopositivity. We conclude that down-regulation of AIP and AHR may be involved in the aggressiveness of somatotrophinomas. Overall, IHC is a poorly sensitive tool for the screening of AIP mutations. Data obtained on AHR expression suggest that AHR signalling may be differentially affected according to PA phenotype
    • …
    corecore