70 research outputs found

    Electrophilic metabolites targeting the KEAP1/NRF2 partnership

    Get PDF
    Numerous electrophilic metabolites are formed during cellular activity, particularly under conditions of oxidative, inflammatory and metabolic stress. Among them are lipid oxidation and nitration products, and compounds derived from amino acid and central carbon metabolism. Here we focus on one cellular target of electrophiles, the Kelch-like ECH associated protein 1 (KEAP1)/nuclear factor erythroid 2 p45-related factor 2 (NRF2) partnership. Many of these reactive compounds modify C151, C273 and/or C288 within KEAP1. Other types of modifications include S-lactoylation of C273, N-succinylation of K131, and formation of methylimidazole intermolecular crosslink between two KEAP1 monomers. Modified KEAP1 relays the initial signal to transcription factor NRF2 and its downstream targets, the ultimate effectors that provide means for detoxification, adaptation and survival. Thus, by non-enzymatically covalently modifying KEAP1, the electrophilic metabolites discussed here serve as chemical signals connecting metabolism with stress responses

    A novel uterine leiomyoma subtype exhibits NRF2 activation and mutations in genes associated with neddylation of the Cullin 3-RING E3 ligase

    Get PDF
    Uterine leiomyomas, or fibroids, are the most common tumors in women of reproductive age. Uterine leiomyomas can be classified into at least three main molecular subtypes according to mutations affecting MED12, HMGA2, or FH. FH-deficient leiomyomas are characterized by activation of the NRF2 pathway, including upregulation of the NRF2 target gene AKR1B10. Here, we have identified a novel leiomyoma subtype showing AKR1B10 expression but no alterations in FH or other known driver genes. Whole-exome and whole-genome sequencing revealed biallelic mutations in key genes involved in neddylation of the Cullin 3-RING E3 ligase, including UBE2M, NEDD8, CUL3, and NAE1. 3 ' RNA sequencing confirmed a distinct molecular subtype with activation of the NRF2 pathway. Most tumors displayed cellular histopathology, perivascular hypercellularity, and characteristics typically seen in FH-deficient leiomyomas. These results suggest a novel leiomyoma subtype that is characterized by distinct morphological features, genetic alterations disrupting neddylation of the Cullin 3-RING E3 ligase, and oncogenic NRF2 activation. They also present defective neddylation as a novel mechanism leading to aberrant NRF2 signaling. Molecular characterization of uterine leiomyomas provides novel opportunities for targeted treatment options.Peer reviewe

    Hemin and Cobalt Protoporphyrin Inhibit NLRP3 Inflammasome Activation by Enhancing Autophagy : A Novel Mechanism of Inflammasome Regulation

    Get PDF
    Inflammasomes are intracellular protein platforms, which, upon activation, produce the highly proinflammatory cytokines interleukin (IL)-1 beta and IL-18. Heme, hemin and their degradation products possess significant immunomodulatory functions. Here, we studied whether hemin regulates inflammasome function in macrophages. Both hemin and its derivative, cobalt protoporphyrin (CoPP), significantly reduced IL-1 beta secretion by cultured human primary macrophages, the human monocytic leukemia cell line and also mouse bone marrow-derived and peritoneal macrophages. Intraperitoneal administration of CoPP to mice prior to urate crystal-induced peritonitis alleviated IL-1 beta secretion to the peritoneal cavity. In cultured macrophages, hemin and CoPP inhibited NLRP3 inflammasome assembly by reducing the amount of intracellular apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). The reduction of ASC was associated with enhanced autophagosome formation and autophagic flux. Inhibition of autophagy prevented the CoPP-induced depletion of ASC, implying that the depletion was caused by increased autophagy. Our data indicate that hemin functions as an endogenous negative regulator of the NLRP3 inflammasome. The inhibition is mediated via enhanced autophagy that results in increased degradation of ASC. This regulatory mechanism may provide a novel approach for the treatment of inflammasome-related diseases. (C) 2016 S. Karger AG, BaselPeer reviewe

    Nuclear factor E2-related factor 2 deficiency impairs atherosclerotic lesion development but promotes features of plaque instability in hypercholesterolaemic mice

    Get PDF
    Aims Oxidative stress and inflammation play an important role in the progression of atherosclerosis. Transcription factor NF-E2-related factor 2 (Nrf2) has antioxidant and anti-inflammatory effects in the vessel wall, but paradoxically, global loss of Nrf2 in apoE deficient mice alleviates atherosclerosis. In this study, we investigated the effect of global Nrf2 deficiency on early and advanced atherogenesis in alternative models of atherosclerosis, LDL receptor deficient mice (LDLR-/-), and LDLR-/- mice expressing apoB-100 only (LDLR-/- ApoB(100/100)) having a humanized lipoprotein profile. Methods and results LDLR-/- mice were fed a high-fat diet (HFD) for 6 or 12weeks and LDLR(-/-)ApoB(100/100) mice a regular chow diet for 6 or 12months. Nrf2 deficiency significantly reduced early and more advanced atherosclerosis assessed by lesion size and coverage in the aorta in both models. Nrf2 deficiency in LDLR-/- mice reduced total plasma cholesterol after 6weeks of HFD and triglycerides in LDLR(-/-)ApoB(100/100) mice on a chow diet. Nrf2 deficiency aggravated aortic plaque maturation in aged LDLR(-/-)ApoB(100/100) mice as it increased plaque calcification. Moreover, approximate to 36% of Nrf2(-/-)LDLR(-/-)ApoB(100/100) females developed spontaneous myocardial infarction (MI) or sudden death at 5 to 12months of age. Interestingly, Nrf2 deficiency increased plaque instability index, enhanced plaque inflammation and calcification, and reduced fibrous cap thickness in brachiocephalic arteries of LDLR(-/-)ApoB(100/100) female mice at age of 12months. Conclusions Absence of Nrf2 reduced atherosclerotic lesion size in both atherosclerosis models, likely via systemic effects on lipid metabolism. However, Nrf2 deficiency in aged LDLR(-/-)ApoB(100/100) mice led to an enhanced atherosclerotic plaque instability likely via increased plaque inflammation and oxidative stress, which possibly predisposed to MI and sudden death.Peer reviewe

    Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases

    Get PDF
    The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the maintenance of redox, metabolic and protein homeostasis, as well as the regulation of inflammation. Thus, NRF2 activation provides cytoprotection against numerous pathologies including chronic diseases of the lung and liver; autoimmune, neurodegenerative and metabolic disorders; and cancer initiation. One NRF2 activator has received clinical approval and several electrophilic modifiers of the cysteine-based sensor KEAP1 and inhibitors of its interaction with NRF2 are now in clinical development. However, challenges regarding target specificity, pharmacodynamic properties, efficacy and safety remain.This work was supported by grants SAF2015-71304-REDT and SAF2016-76520-R from the Spanish Ministry Economy and Competitiveness; P_37_732/2016 REDBRAIN from the European Regional Development Fund; Competitiveness Operational Program 2014–2020; US National Institutes of Health grant R35 CA197222; Cancer Research UK grant C20953/A18644; Medical Research Council grant MR/N009851/1; Biotechnology and Biological Sciences Research Council grant BB/L01923X/1; Tenovus Scotland grant T17/14; and grant 275147 from the Academy of Finland, Sigrid Juselius Foundation and Finnish Cancer Foundation.Peer reviewe

    HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells.

    Get PDF
    Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.Peer reviewe

    NF-E2-related factor 2 activation boosts antioxidant defenses and ameliorates inflammatory and amyloid properties in human Presenilin-1 mutated Alzheimer's disease astrocytes

    Get PDF
    Alzheimer's disease (AD) is a common dementia affecting a vast number of individuals and significantly impairing quality of life. Despite extensive research in animal models and numerous promising treatment trials, there is still no curative treatment for AD. Astrocytes, the most common cell type of the central nervous system, have been shown to play a role in the major AD pathologies, including accumulation of amyloid plaques, neuroinflammation, and oxidative stress. Here, we show that inflammatory stimulation leads to metabolic activation of human astrocytes and reduces amyloid secretion. On the other hand, the activation of oxidative metabolism leads to increased reactive oxygen species production especially in AD astrocytes. While healthy astrocytes increase glutathione (GSH) release to protect the cells, Presenilin‐1‐mutated AD patient astrocytes do not. Thus, chronic inflammation is likely to induce oxidative damage in AD astrocytes. Activation of NRF2, the major regulator of cellular antioxidant defenses, encoded by the NFE2L2 gene, poses several beneficial effects on AD astrocytes. We report here that the activation of NRF2 pathway reduces amyloid secretion, normalizes cytokine release, and increases GSH secretion in AD astrocytes. NRF2 induction also activates the metabolism of astrocytes and increases the utilization of glycolysis. Taken together, targeting NRF2 in astrocytes could be a potent therapeutic strategy in AD.</p

    Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process. The ubiquitin-proteasome pathway and the lysosomal/autophagosomal pathway are the two major proteolytic systems in eukaryotic cells. NRF-2 (nuclear factor-erythroid 2-related factor-2) and PGC-1 alpha (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) are master transcription factors in the regulation of cellular detoxification. We investigated the role of NRF-2 and PGC-1 alpha in the regulation of RPE cell structure and function by using global double knockout (dKO) mice. The NRF-2/PGC-1 alpha dKO mice exhibited significant age-dependent RPE degeneration, accumulation of the oxidative stress marker, 4-HNE (4-hydroxynonenal), the endoplasmic reticulum stress markers GRP78 (glucose-regulated protein 78) and ATF4 (activating transcription factor 4), and damaged mitochondria. Moreover, levels of protein ubiquitination and autophagy markers p62/SQSTM1 (sequestosome 1), Beclin-1 and LC3B (microtubule associated protein 1 light chain 3 beta) were significantly increased together with the Iba-1 (ionized calcium binding adaptor molecule 1) mononuclear phagocyte marker and an enlargement of RPE size. These histopathological changes of RPE were accompanied by photoreceptor dysmorphology and vision loss as revealed by electroretinography. Consequently, these novel findings suggest that the NRF-2/PGC-1 alpha dKO mouse is a valuable model for investigating the role of proteasomal and autophagy clearance in the RPE and in the development of dry AMD.Peer reviewe
    corecore