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Abstract 

Transcription factor NF-E2 p45-related factor 2 (NRF2, gene name NFE2L2) and its 

principal negative regulator, the E3 ligase adapter Kelch-like ECH-associated protein 1 

(KEAP1), play a critical role in the development and progression of chronic diseases of the 

lung and liver, autoimmune, neurodegenerative and metabolic disorders, and also cancer. 

NRF2 activation provides cytoprotection against numerous pathologies characterized by 

chronic inflammation, metabolic alterations and redox disturbances. One NRF2 activator 

has received clinical approval and several electrophilic modifiers of the cysteine-based 

sensor KEAP1 and inhibitors of its interaction with NRF2 are now in clinical development.  

However, challenges regarding target specificity, pharmacodynamic properties, efficacy, 

and safety remain.   

 

Introduction 

Transcription factor NRF2 was discovered in 1994 as a member of the human cap’n’collar 

(CNC) basic-region leucine zipper transcription factor family1. Subsequent work, including 

the generation of NRF2-knockout mice2,3, established that NRF2 regulates the expression 

of about 250 genes that contain an enhancer sequence in their promoter regulatory regions 

that is termed the Antioxidant Response Element (ARE). These genes encode a network of 

cooperating enzymes involved in endobiotic and xenobiotic biotransformation reactions, 

antioxidant metabolism, intermediate metabolism of carbohydrates and lipids, iron 

catabolism, protein degradation and regulators of inflammation4. Through this 

transcriptional network, NRF2 is able to coordinate a multifaceted response to diverse 

forms of stress, enabling maintenance of a stable internal environment. 
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In 1999, Kelch-like ECH-associated protein 1 (KEAP1) was identified as a 

repressor of NRF2 5, and a further 5 years elapsed before it was reported to be an E3 

ubiquitin ligase substrate adaptor that targets NRF2 for rapid proteasomal degradation6-8. 

Thus, KEAP1 ensures that under unstressed conditions NRF2 is a protein of low abundance 

with a limited half-life of only about 15-40 min, depending on the cell type. Importantly 

however, KEAP1 contains several highly reactive cysteines that upon modification by 

electrophilic molecules prevent it from targeting NRF2 for proteasomal degradation, 

thereby resulting in rapid nuclear accumulation of NRF2 protein upon redox stress and, 

following dimerization with small musculoaponeurotic fibrosarcoma oncogene homolog 

(sMAF) proteins, induction of ARE-containing genes by NRF2-sMAF9,10.  

It is now widely recognized that because of the versatile and comprehensive 

cytoprotective roles of the proteins encoded by NRF2 target genes, including anti-oxidant, 

detoxification and anti-inflammatory proteins, a functional NRF2/KEAP1 axis is essential 

for protection against a plethora of diseases that have oxidative stress and inflammation as 

underlying pathological features. These include metabolic and inflammatory/autoimmune 

disorders, diseases of the lung, liver, kidney, gastrointestinal tract, and cardiovascular 

system, as well as neurological conditions9,11. The experimental evidence for the protective 

effects of NRF2 in these non-neoplastic diseases will be discussed later in this review. We 

will also address the role of NRF2 in cancer, which is a matter of intense research12 . 

A three-dimensional reconstruction structure of the KEAP1 dimer obtained by 

single particle electron microscopy shows that the protein has a forked-stem structure 

comprising two large spheres that enclose the intervening (IVR), Kelch, and C-terminal-

region domains, where dimerization is mediated by the BTB domain13 (Figure 1A). 

Bearing in mind that KEAP1 contains a number of distinct and autonomously functioning 



4	
	

cysteine sensors (C151, C226, C273, C288 and C613)14-16, the existing evidence suggests 

that NRF2 and KEAP1 integrate nitric oxide, Zn2+ and alkenal signaling with redox 

signaling, and that together they also provide a mechanism that probably evolved, at least in 

part, to allow rapid adaptation to exposure to phytochemicals encountered in the diet. Many 

plant-derived electrophilic xenobiotics activate the NRF2/KEAP1 axis to elicit 

cytoprotective responses, with the highly reactive cysteines in KEAP1 acting as the 

immediate sensors17-19. The high reactivity of these sensors with electrophiles allows for 

therapeutic KEAP1 targeting in the absence of unspecific thiol modifications (Figure 1B). 

Therefore a wealth of naturally-occurring inducers of NRF2-target genes has been 

described20, and new inducing agents continue to be discovered. 

Whilst a substantial number of academic laboratories have been involved in 

identification of NRF2 activators, historically the engagement of pharmaceutical companies 

in this exciting and promising field has been relatively low key. This possible reticence of 

industry to consider the NRF2/KEAP1 axis as a valuable drug target may be due in part to 

its wide spectrum of biochemical activities, beyond merely controlling antioxidant systems, 

which are regulated either directly or indirectly by NRF2. The diverse direct and indirect 

effects of NRF2 activators are sometimes interpreted as evidence for non-specific effects. 

However, the evolution of several distinct thiol-based redox switches within KEAP1 that 

allow mammalian species to adapt to a wide spectrum of phytochemicals provides a 

rationale for changing the perception that activation of NRF2 elicits certain “off-target” 

effects, and to adopt a broader view that activation of NRF2 elicits beneficial “multi-target” 

cytoprotective effects11. In particular, the “multi-target” benefits of NRF2 activation 

include maintenance of redox signaling, enhanced xenobiotic biotransformation, control 

and resolution of inflammation, suppression of gluconeogenesis and hepatic lipogenesis, 
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support of proteostasis, and suppression of fibrosis9. In this context, it is noteworthy that 

most chronic diseases, particularly those confined to the aged population, do not have a 

unique etiology, nor do they exhibit a single pathophenotype, and as such they may be most 

effectively treated with drugs that activate NRF2. Indeed, stimulation of broad 

cytoprotective mechanisms upon NRF2 activation is less likely to be effectively 

overwhelmed or circumvented by pathogenic processes than are more specifically-targeted 

therapeutic interventions. 

This expanded recognition of NRF2 as a potential drug target has sparked the 

interest of the pharmaceutical industry and led to a substantial investment in the clinical 

development of NRF2 modulators21. The NRF2 activator dimethyl fumarate (DMF, trade 

names, Fumaderm or Tecfidera) is now clinically used to treat psoriasis and remitting 

relapsing multiple sclerosis (Table 1), and its current distribution remains a hallmark that 

other pharmaceutical companies hope to achieve. Currently, a number of NRF2 activators 

of several distinct chemical classes are at various stages of clinical development, such as 

the KEAP1 cysteine-targeting fumaric acid derivatives, the isothiocyanate sulforaphane, 

cyanoenone triterpenoids, nitro fatty acids, and hydroxylamine. Additional drug candidates 

include non-electrophilic compounds that disrupt the NRF2/KEAP1 protein-protein 

interactions, as well as molecules with KEAP1-independent modes of action. Inhibitors of 

NRF2 are also being pursued, but are not yet in clinical trials. This review provides an 

overview of these drug candidates and highlights the unusual nature and the critical 

importance of context for targeting the NRF2/KEAP1 axis. The physiological roles of 

NRF2 in cellular redox, metabolic and protein homeostasis, and in resolution of 

inflammation are described, and experimental evidence for the protective role of NRF2 in 

non-neoplastic disease is presented. The advantages and limitations of the various small 
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molecule pharmacological modulators of NRF2 activity that are in clinical development are 

assessed. Finally, ongoing challenges associated with the development of NRF2 

modulators, including target specificity, pharmacodynamics assessment, bioavailability, 

efficacy, and safety are highlighted. 

 

Physiological roles of the NRF2/KEAP1 axis  

Redox, metabolic and protein homeostasis 

Since its initial discovery in the participation of biotransformation reactions, in which it 

regulates the expression of certain cytochrome P450 oxidoreductases, conjugating enzymes 

and ABC transporters (Table 2), it has become increasingly apparent that NRF2 is involved 

in control of the redox environment, culminating in recognition of the NRF2/KEAP1 axis 

as a ‘thiol-driven master switch’ that is used for ‘system-wide oxidative stress responses’22. 

NRF2 regulates the expression of the four genes (glucose 6-phosphate dehydrogenase, 6-

phosphogluconate dehydrogenase, malic enzyme 1, and isocitrate dehydrogenase 1) 

involved in the generation of NADPH, the critical cofactor that fuels antioxidant 

reactions23-26. The supply of this reducing equivalent is further used by a plethora of redox 

reactions, many of which are also regulated by NRF2. Thus, NRF2 regulates the expression 

of critical enzymes involved in the synthesis and use of the redox buffer reduced 

glutathione (GSH, the oxidized form of which is GSSG), such as the catalytic and 

modulator subunits of glutamate-cysteine ligase, glutathione reductase, glutathione 

peroxidase and several glutathione S-transferases4. Moreover, many ancillary proteins 

within the redoxin family such as thioredoxin, thioredoxin reductase, peroxiredoxin and 

sulfiredoxin, are all regulated by NRF2, and provide compartmentalized sensing and signal 

transduction of regional production of reactive oxygen species (ROS, i.e., hydrogen 
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peroxide, the hydroxyl radical and the superoxide radical)27-29. Besides these direct effects 

on redox status, NRF2 regulates genes encoding enzymes that prevent quinones from 

participating in redox cycling reactions and glutathione depletion (by NAD(P)H:quinone 

oxidoreductase-1 (NQO1)) or are involved in the indirect production of bilirubin (heme 

oxygenase 1, HMOX1; biliverdin reductase, BVR), which is the most potent non-polar 

physiological antioxidant30. Finally, through crosstalk with the pentose phosphate pathway 

and glycolysis, NRF2 affects intermediary metabolism and increases the availability of 

substrates and reducing equivalents for the mitochondrial respiratory chain31, as well as for 

maintaining integrity of mitochondrial DNA (mtDNA)32.  

NRF2 participates in the clearance of oxidized, or otherwise damaged, proteins and 

organelles during redox alterations or nutritional starvation. Thus, the autophagy transporter 

sequestosome 1 (SQSTM1/p62), which interacts with ubiquitinated cargo via its ubiquitin 

association (UBA) domain and recruits them into the autophagosome via its LC3-

interacting motif, is an NRF2 transcriptional target33,34. In addition, KEAP1 binds to 

p6233,35, and a recent study has found that KEAP1/Cul3 ubiquitinates p62 at lysine-420 

within its UBA domain, thereby facilitating the sequestration activity of p6236. Within its 

primary structure, p62 contains an ETGE-like motif, STGE, which upon phosphorylation 

by mTORC1 generates the recognition site for docking to KEAP137. Then, KEAP1 is 

transported to the autophagosome for degradation, thus allowing accumulation of NRF238. 

Moreover, several autophagy genes appear to contain ARE sequences in their promoter 

regions, and it has been reported that NRF2 activates both chaperone-mediated autophagy39 

and macroautophagy40,41. Other roles of NRF2 in proteostasis under oxidative conditions 

are demonstrated by its activation by the unfolded protein response42,43 and its ability to 

regulate proteasome subunit expression44,45.  
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At least in brain and blood, the abundance of mRNA encoding NRF2 is higher than 

that for KEAP1 (Figure 2) and by contrast the half-life of the KEAP1 protein is longer than 

that of NRF2 (Table 2). These observations highlight the different turnover rates of both 

proteins: slow for KEAP1; fast for NRF2. Moreover, although NRF2 and KEAP1 are 

ubiquitously expressed, specific cell types are predominantly in charge of homeostatic 

adaptations and present different levels of expression (Figure 2). Thus, monocytes and 

neutrophils exhibit the highest levels of NRF2 among blood cells, suggesting an 

immunomodulatory effect of the innate immune system (see below). In the brain, crosstalk 

between astrocytes and neurons couples intermediate metabolism with redox homeostasis, 

at least in part through NRF246. Moreover, glutamatergic neurotransmission in neurons 

leads to production of ROS that are controlled by the neuronal GSH pool. When this pool is 

low, neighboring astrocytes contribute to its restoration by providing neurons with the GSH 

precursors glycine, glutamate/glutamine and cysteine47. Not surprisingly, NRF2 levels are 

high in astrocytes (Figure 2). Moreover, microglia as part of the monocyte lineage 

expresses high levels of NRF2 compared to neurons. 

 

Resolution of inflammation 

NRF2 is abundant in monocytes and granulocytes (Figure 2), suggesting its involvement in 

immune responses driven by these cell types. NRF2-knockout mice are hypersensitive to 

septic shock48, and display persistent inflammation during wound healing49,50, whereas 

genetic or pharmacological activation of NRF2 suppresses production of pro-inflammatory 

cytokines51-56. In human cells, disruption of KEAP1, protected against sepsis by attenuating 

the inflammatory response of myeloid leukocytes57 and macrophages58. Of particular 

interest, a polymorphism in NFE2L2 that is associated with reduced transcriptional activity 
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correlated with increased risk of inflammatory bowel disease59 and chronic gastritis60. As 

indicated below, the robust anti-inflammatory activity of NRF2 has been attributed to at 

least three independent mechanisms: 1, modulation of redox metabolism; 2, crosstalk with 

nuclear factor-kappaB (NF-κB); 3, direct regulation of pro-inflammatory genes. 

Inflammation is associated with increased local and systemic accumulation of 

pathological levels of ROS that may impair redox signaling61. Mitochondrial dysfunction 

and uncontrolled activation of NADPH oxidase represent the main contributors to 

heightened ROS production in inflammatory cells, and mitochondrial ROS cause damage 

and release of mtDNA, thus creating a vicious cycle of events leading to further ROS 

production and activation of the inflammasome, ultimately resulting in organ debilitation62. 

The redox-regulating activity of NRF2 represents an important break on the vicious cycle 

that prevents exacerbated inflammation and subsequent tissue damage63.  

NF-κB and NRF2 engage in crosstalk. Several functional NF-κB binding sites have 

been identified in the NFE2L2 gene promoter64. On the other hand, NRF2 inhibits NF-κB 

transcriptional activity. Treatment of NRF2-deficient mice with lipopolysaccharide (LPS) 

or TNF-α increased the expression of the NF-κB transcriptional signature, suggesting an 

inhibitory role of NRF2 on NF-κB48. A possible interpretation of this finding is that the 

inhibitor of NF-κB (IκB) is highly phosphorylated in NRF2-deficient cells and subject to 

rapid proteasomal degradation, thereby diminishing inhibition of NF-κB48. Additionally, 

LPS was shown to activate simultaneously both a fast NF-κB-mediated response and a slow 

NRF2-mediated response, with the initial pro-inflammatory response being driven by NF-

κB which was then subsequently inhibited when NRF2 activity was maximal65. Other 

mechanisms by which the NRF2/KEAP1 axis suppresses NF-κB signaling include 
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competition between NRF2 and p65 for binding to p30066 and degradation of IκB kinase 

(IKK)β by KEAP167,68 .    

Several macrophage-specific genes contain ARE sequences and are therefore 

regulated by NRF2. These include MARCO, a receptor required for bacterial phagocytosis, 

and CD36, a scavenger receptor for oxidized low-density lipoproteins69,70. On the other 

hand, NRF2 binds to regulatory regions of pro-inflammatory genes encoding IL-6 and IL-

1β in an ARE-independent manner and prevents the recruitment of RNA Pol II to start 

transcription52.  

Recent studies have provided a connection between macrophage metabolism and 

anti-inflammatory responses elicited by NRF2. The mitochondrial metabolite itaconate is 

produced from the TCA cycle in response to pro-inflammatory stimuli and increases 

profoundly during macrophage activation71,72. In turn, itaconate alkylates several KEAP1 

cysteine sensors, including the critical C151, C273 and C288 residues, thereby activating 

NRF2 and suppressing transcription of pro-inflammatory cytokines, such as IL-6 and IL-

1β71. Therefore, itaconate is an endogenous regulator of KEAP1 that acts as an ‘off-switch’ 

during the resolution of inflammation. In addition, activation of NRF2 by the cell-

permeable itaconate derivative, 4-octyl-itaconate or sulforaphane represses the expression 

of the adaptor molecule stimulator of interferon genes (STING) by decreasing its mRNA 

stability, and consequently suppresses type-I interferon production73,74. 

 

The NRF2/KEAP1 axis in non-neoplastic disease 

A wealth of information has been generated in cellular and animal models about the role of 

NRF2 in providing protection against numerous chronic diseases, with many investigations 
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employing NRF2-knockout mice75. Regarding humans, a recent study provided a basis to 

analyze the contribution of NRF2 in combatting chronic disease using a Systems Medicine 

approach and, based on the connectivity of NRF2 with other molecules (NRF2-

interactome) along with empirical evidence, established a first map of NRF2-related 

diseases (NRF2-diseasome)9. Compelling evidence for a role of NRF2 in determining the 

susceptibility of humans to chronic disease is continually being provided by association 

studies between functional genetic variations of NFE2L2 and disease risk76-78. Moreover, 

these genetic studies support the hypothesis that drugs mimicking small changes in NRF2 

expression reported for some functional variations of NFE2L2 may be of therapeutic value. 

Below we will briefly describe some milestones in understanding the involvement of NRF2 

in human chronic disease and highlight the available genetic evidence. 

 

Autoimmune disease 

Oxidative tissue damage and apoptosis lead to the formation of haptens or damaged 

macromolecules that increase the risk of autoimmune reactions. Since NRF2-regulated 

enzymes play a critical role in detoxification of many chemicals, it provides a protective 

mechanism against the environmental susceptibility to autoimmune pathogenesis79. 

Moreover, NRF2 suppresses pro-inflammatory Th1 and Th17 responses and activates 

immunosuppressive Treg and Th2 cells80. The relevance of NRF2 in autoimmunity has 

been extensively studied in experimental autoimmune encephalomyelitis (EAE), which is a 

mouse model for MS, a chronic inflammatory disease characterized by infiltration of 

autoreactive immune cells into the central nervous system. In an EAE mouse model, the 

absence of NRF2 exacerbates disease81 whereas knockdown of KEAP152 or treatment with 

a range of NRF2 activators, including cyanoenone triterpenoids82 and sulforaphane83, 
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attenuate its severity. In humans, gene expression profiling in IFN-1β-treated patients 

identified NRF2 as a potential mediator of long-term antioxidant response and neuronal 

preservation84. As described below, several biopharmaceutical companies are exploiting the 

strong evidence that activation of NRF2 is of therapeutic value in MS. Indeed, the only 

NRF2 activator so far approved by the FDA and the EMA, dimethyl fumarate, is being 

marketed by Biogen for the treatment of remitting relapsing MS and psoriasis85. A 

protective role for NRF2 has been suggested in other autoimmune diseases such as 

systemic lupus erythematous86,87, Sjogren’s syndrome86, rheumatoid arthritis88,89, vitiligo90-

92, and STING-dependent interferonopathies74. 

 

Respiratory disease 

The lung responds to a variety of environmental toxicants, including smoke, by releasing 

pro-inflammatory cytokines and chemokines. This primary effect generates a progressive 

low-grade inflammatory response through the recruitment of circulating monocytes, 

neutrophils and T cells that release additional inflammatory mediators, ROS and 

metalloproteases. The end result is a vicious cycle of damage to lung parenchyma that leads 

to chronic obstructive pulmonary disease (COPD) or emphysema93. NRF2 attenuates the 

burden to lung parenchyma caused by ROS and inflammation. Cigarette smoke is a major 

risk factor for the development of COPD and emphysema.  

 Nrf2-/- mice are much more sensitive to the development of cigarette smoke-induced 

emphysema than their wild-type counterparts94. Furthermore, the development of 

emphysema following chronic exposure to cigarette smoke was associated with a decline in 

the expression of cytoprotective genes95, whereas the pentacyclic cyanoenone CDDO-

imidazolide protected the lungs of Nrf2+/+, but not Nrf2-/- mice, against cigarette smoke-
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induced oxidative stress, alveolar cell apoptosis, alveolar destruction, and pulmonary 

hypertension96. Genetic upregulation of NRF2 (by Keap1 deletion in Clara cells, which are 

abundant in murine upper airways) has a similar protective effect97. 

 In humans, the NRF2 transcriptional signature was decreased in alveolar 

macrophages from patients with smoking-related lung emphysema as compared with 

patients without emphysema98. The human NFE2L2 gene promoter contains a haplotype 

comprising 3 single nucleotide polymorphism (SNP) sequences and 1 triplet repeat 

polymorphism that result in modulation of NRF2 expression. COPD patients with low to 

medium promoter activity were more prone to developing respiratory failure99. 

Pharmacological activation of NRF2 by sulforaphane, or a compound that disrupts the 

interaction of KEAP1 with NRF2, reversed the impaired bacterial phagocytosis by cultured 

alveolar macrophages and monocyte-derived macrophages isolated from patients with 

COPD70,100. However, daily oral administration of sulforaphane (extracted from broccoli 

sprouts) to COPD patients did not result in consistent changes in NRF2-dependent gene 

expression or markers of inflammation in alveolar macrophages and bronchial epithelial 

cells at the doses used101, illustrating some of the challenges in translating findings from 

cell culture studies to humans. Patients with other chronic lung diseases, such as idiopathic 

pulmonary fibrosis, chronic sarcoidosis and hypersensitivity pneumonitis, were found to 

exhibit increased NRF2 expression and augmented levels of endogenous antioxidants in 

bronchoalveolar lavage fluids, suggesting an unsuccessful adaptive response to pathological 

ROS levels102. 

In agreement with the human data, Nrf2-/- mice are much more sensitive to the 

development of cigarette smoke-induced emphysema than their wild-type counterparts94. 

Furthermore, the development of emphysema following chronic exposure to cigarette 
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smoke was associated with a decline in the expression of cytoprotective genes95, whereas 

the pentacyclic cyanoenone CDDO-imidazolide protected the lungs of Nrf2+/+, but not Nrf2-

/- mice, against cigarette smoke-induced oxidative stress, alveolar cell apoptosis, alveolar 

destruction, and pulmonary hypertension96. Genetic upregulation of NRF2 (by Keap1 

deletion in Clara cells, which are abundant in murine upper airways) has a similar 

protective effect97. 

 

Gastro-intestinal disease 

The gastro-intestinal (GI) tract is constantly exposed to xenobiotic challenges that can lead 

to formation of pathological levels of ROS and may provoke inflammatory bowel disease 

(IBD)103. The GI tract is also one of the sites where pharmacological NRF2 activation by 

dietary agents and their synthetic analogs is highly prominent23,104-106. In mice, dextran 

sulfate sodium-induced experimental colitis elicits more profound IBD in NRF2-deficient 

mice than in their wild-type counterparts107. In humans, the relevance of NRF2 in 

adaptation of enterocytes to inflammatory stress was demonstrated in a comprehensive 

transcriptome study on IBD patients that evidenced its role in attenuation of the stress 

response of macrophages in the gut108. Importantly, a genetic association has been found in 

a Japanese cohort of patients between a particular SNP in the NFE2L2 gene and the risk of 

developing ulcerative colitis109. The functional haplotype of the three SNPs in the NFE2L2 

promoter with slightly reduced expression of NRF2 was associated with development of 

gastric mucosal inflammation and peptic ulcer in association with H. pylori infection60. 

The liver represents a first line of defense against food xenobiotics and orally-active 

drugs because a major portion of blood draining the GI tract is directed to the liver via the 

hepatic portal vein. Early work with Nrf2-/- mice demonstrated the hepatoprotective effect 
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of NRF2 against acetaminophen110, as did genetic activation of NRF2111. As possibly 

anticipated, Nrf2-/- mice fed alcohol (4-7 days) are markedly more susceptible to fatty liver 

aggravated hepatic inflammatory responses and liver failure than are similarly fed wild-

type mice, and this is in part likely due to activation of the SREBP lipogenic transcription 

factor and a relative inability to detoxify acetaldehyde112. The observation that disruption of 

NRF2 in mice impeded liver regeneration following partial hepatectomy led to the 

discovery that NRF2 regulates the gene expression of Notch1113, a mechanism that is also 

involved in the NRF2-mediated improvement of hematopoietic stem progenitor cell 

function and myelosuppression following exposure to ionizing radiation114. In a mouse 

model of hereditary hemochromatosis with iron overload (due to mutation of the 

Homeostatic Iron Regulator gene), knockout of NRF2 increased necro-inflammatory 

lesions within livers of the knockout mice that led to hepatic fibrosis115. Consistent with 

these observations, patients with primary biliary cholangitis and cirrhosis exhibit reduced 

NRF2 expression116. 

 

Metabolic disease 

Metabolic disease, also referred to as metabolic syndrome, is typified by abdominal 

obesity, hypertension, hypertriglyceridemia, low high-density lipoprotein and fasting 

hyperglycemia. It is closely linked with type-2 diabetes mellitus (T2DM) and associated 

comorbidities such as vascular dysfunction, cardiovascular disease, glomerulonephritis, 

NASH (see above) and cognitive impairment. Although T2DM and its comorbidities are 

characterized by overproduction of superoxide by mitochondria117,  NRF2-null mice do not 

spontaneously develop diabetes. Indeed, the knockout mice exhibit increased insulin 

sensitivity, which has been attributed to ROS-mediated inhibition of protein tyrosine kinase 
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phosphatase 1B that antagonizes insulin signaling118. By contrast, genetic activation of 

NRF2 by knockout/knockdown of KEAP1 in mice on a db/db background, or 

pharmacological activation of NRF2 in db/db mice, suppress the onset of T2DM119. It 

therefore seems likely that when pancreatic beta cells are metabolically challenged to 

synthesize insulin in response to hyperglycemia, the resulting ROS burden may cause 

oxidative damage that impairs the response, leading to T2DM120,121. If this conclusion is 

correct, it is likely that improved pancreatic function contributes significantly to the 

improved glucose disposal observed following pharmacological activation of NRF2 by 

TBE-31 or sulforaphane in mice with diet-induced T2DM122,123, and in the reduction of 

fasting blood glucose and glycated hemoglobin (HbA1c) by sulforaphane-rich broccoli 

sprout extracts in obese patients with dysregulated T2DM123. Besides imparting increased 

resilience to oxidative stress on pancreatic beta cells, NRF2 activation may contribute to 

improved whole-body glucose homeostasis by suppressing glycogen breakdown in skeletal 

muscle through increasing expression of glycogen branching enzyme and phosphorylase b 

kinase α119. In mouse models of diabetic nephropathy, pharmacological activation of NRF2 

by sulforaphane or cinnamic aldehyde has been shown to suppress oxidative stress, 

transforming growth factor-β1 signaling and fibrosis124. 

It seems likely that NRF2 plays a key role in insulin resistance as suggested by the 

fact that its expression is low in monocytes of diabetic patients125. Compelling evidence 

comes from genetic association studies indicating that some NFE2L2 polymorphisms that 

result in low NRF2 expression lead to pathological ROS levels and increased risk of 

T2DM126-128. Regarding complications, a failure of antioxidant protection due to 
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demethylation of the CpG islands in the KEAP1 promoter has been linked to diabetic 

cataracts129. 

NRF2 may also be protective against the development of nonalcoholic 

steatohepatitis (NASH). In a mouse model of NASH that involves administration of a 

methionine- and choline-deficient diet, NRF2-null mice succumbed to the disease much 

more rapidly than did wild type mice130,131. In a more physiological model of NASH, 

NRF2-deficient mice fed a high-fat diet also developed exacerbated hepatic steatosis and 

inflammation suggesting the need for NRF2 to suppress the onset of these symptoms118,132. 

Furthermore, pharmacologic activation of NRF2 by the tricyclic cyanoenone TBE-31 in 

wild-type, but not NRF2-knockout mice, which had been rendered obese and insulin 

resistant by chronic consumption of high-fat and high-fructose diet, reversed insulin 

resistance, suppressed hepatic steatosis, and ameliorated both NASH and liver fibrosis122. 

Pharmacological activation of NRF2 by TBE-31 antagonizes SREBP-1c and ChREBP and 

expression of their lipid-biosynthetic target genes, which likely involves activation of 

AMPK122,133. Moreover, in mouse liver, genetic activation of NRF2 antagonizes expression 

of the gluconeogenic enzymes PEPCK and G6PC, which may also involve AMPK133. In 

liver biopsies of NASH patients, pathological ROS levels were found together with an 

increased NRF2-gene signature, suggesting an attempt to reduce the oxidant and 

inflammatory burden134. 

 

Cardiovascular disease 

An imbalance between the production and disposal of ROS resulting in an excessive 

formation of damaging oxidative species has been postulated to play a role in a number of 

cardiovascular diseases, such as hypertension, atherosclerosis, diabetic vascular disease, 
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myocardial ischemia-reperfusion injury and heart failure135. In addition, low grade, 

persistent inflammation within the vascular wall is characteristic of the atherogenic process 

and development of vulnerable atherosclerotic plaques that are prone to rupture, 

subsequently leading to thrombosis and end-organ ischemia. Given that NRF2 is the key 

regulator of antioxidant defense and also has direct anti-inflammatory properties, it is 

logical to assume that NRF2 would protect against ROS-related cardiovascular disease. 

Indeed, NRF2 activating agents, including fumarate and hydrogen sulfide, have shown 

protective effects in many animal models of cardiovascular disease, such as cardiac 

ischemia-reperfusion injury136,137 and heart failure138,139. The role of NRF2 in 

atherosclerosis in mouse models of hypercholesterolemia is less straightforward: the loss of 

NRF2 in bone marrow derived cells aggravates atherosclerosis140,141, whereas global 

deficiency of NRF2 alleviates atherosclerosis assessed by the extent of lesion 

development142-145, yet increases plaque inflammation and vulnerability145. Nevertheless, 

several NRF2 activating agents have been shown to be atheroprotective in a variety of 

animal models of atherosclerosis146-148. Cardiac diseases caused by mutations in contractile, 

cytoskeletal proteins and molecular chaperones can account for about 30% of inheritable 

cardiomyopathies149. In some of these settings, reductive rather than oxidative stress, 

coupled with protein aggregation, is associated with the cardiomyopathies. Recently, 

systemic inflammation and pathological ROS formation in hemodialysis patients were 

associated with down-regulation of NRF2150 and a polymorphism located in the NFE2L2 

promoter has been associated with increased mortality in these patients151. Disruption of the 

NRF2 signaling axis prevents reductive stress and delays proteotoxic cardiac disease in 

mice overexpressing human CRYAB (α-crystalline B chain), a molecular chaperone, in the 
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heart152. Thus, as highlighted throughout this review, the context for targeting NRF2 is very 

important – more may not always be better.  

 

Neurodegenerative disease 

In various forms of neurodegenerative disease, the connection between NRF2 and 

proteostasis is particularly pertinent since these diseases are characterized by abnormal 

protein aggregation43. Compelling evidence for a protective role of NRF2 in proteinopathy 

has been provided in Alzheimer’s disease (AD) models of amyloidopathy153,154, 

tauopathy155 or both40,156,157 and in Parkinson’s disease (PD) models of alpha-

synucleinopathy158-160. In humans, APP and TAU injured neurons express increased levels 

of NRF2 and its target p6240,161. These findings are consistent with the recently reported 

role of NRF2 in upregulating expression of genes involved in macroautophagy40 and 

chaperone mediated autophagy39, two essential mechanisms for clearance of APP, TAU 

and α-synuclein. Upregulation of NRF2 protected neurons against the toxicity of mutant α-

synuclein and leucine-rich repeat kinase 2 (LRRK2)162, which also leads to 

neurodegeneration associated with accumulation of misfolded proteins163. Curiously, 

whereas NRF2 activation increased the degradation of α-synuclein, misfolded diffuse 

LRRK2 was sequestered into inclusion bodies. 

The role of NRF2 in astrocytes and microglia is expected to be especially relevant 

as they show the highest expression levels in the brain (Figure 2B). Using transgenic mice 

with an ARE-driven alkaline phosphatase reporter gene, it was found that astrocytes are 

highly responsive to NRF2 activation in several models of neurodegeneration164, pointing 

to the relevance of NRF2 in the nurturing effect of astrocytes by providing metabolic and 

GSH precursors to endangered neurons46,165. Microglia, as the immune response cell of the 
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brain, is also crucial in NRF2 mediated responses166,167. In the murine model of PD based 

on intoxication with the Parkinsonian toxin methyl-4-phenyl-1,2,3,6-tetrahydropyridine, it 

was reported that NRF2 modulates microglial dynamics, and thereby reduces production of 

COX-2, NOS2, IL-6, and TNF-α and increases the levels of several anti-inflammatory 

markers55,168. The activation of microglia by TAU-injured neurons appears to be related, at 

least in part, to the crosstalk through the chemokine fractalkine. Both in mice and in 

humans, TAU-injured neurons release fractalkine, which in neighboring microglia inhibits 

GSK-3 and leads to increases in NRF2 protein. In turn, NRF2 reduces the release of TNF-α 

and IL-6 and participates in the reprogramming of microglia towards a wound healing 

response161.  

Several NRF2-target genes including HMOX1, NQO1, GCLM and p62/SQSTM1 are 

upregulated in AD and PD brains159,169-171. The relevance of this upregulation is 

demonstrated by genetic analyses of the association between disease risk and the functional 

haplotype made of three SNPs in the NFE2L2 promoter. In ALS, a protective haplotype 

allele was associated with a 4-year delay in disease onset172, but another study did not find 

a clear association173. In AD, another haplotype variant was associated with a 2-years 

earlier onset of disease76. More detailed evidence has been reported for PD. Initially, a 

protective haplotype was associated with delayed onset of disease in a Swedish cohort and 

reduced risk in a Polish cohort of PD patients77. Afterwards, these findings were replicated 

in four independent European case-control studies174, but not in a Taiwanese population175, 

suggesting differences in ethnicities and environmental factors.  

Pharmacological activation of NRF2 also holds promise for the treatment of 

Huntington’s disease (HD) and Friedreich's ataxia (FRDA), where oxidative stress and 

inflammation are important drivers of pathology. Studies in mice, model organisms and 
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cultured cells from patients with HD and FRDA have reported impaired NRF2 

signaling53,176-178, and the beneficial effects of pharmacological NRF2 activators. Thus, 

activation of NRF2 by triazole derivatives suppressed the release of pro-inflammatory 

cytokines in primary mouse HD microglia and astrocytes and in cultured monocytes from 

HD patients53, and was neuroprotective in ex vivo HD rat corticostriatal brain slices and an 

HD Drosophila model179. In mouse models of HD, DMF and the triterpenoids CDDO-ethyl 

amide and CDDO-trifluoroethyl amide improved the brain pathology and behavior of the 

animals180,181. Treatment with sulforaphane and the cyclic cyanoenones TBE-31 or RTA-

408 led to improved mitochondrial function and protection against oxidative stress in 

fibroblasts and cerebellar granule neurons from FRDA mouse models, and in fibroblasts 

from HD patients182,183. Altogether, the available evidence suggests that a modest activation 

of NRF2 is neuroprotective in the brain. 

 

The NRF2/KEAP1 axis and cancer 

NRF2 has been reported to exert both anti- and pro-tumorigenic actions. Here we provide a 

brief summary of the current understanding of the role of NRF2 in cancer and refer the 

reader to a recent comprehensive review discussing NRF2 in the context of the hallmarks of 

cancer12.  

In non-malignant cells, NRF2 activation affords resistance to oxidant-induced 

genetic damage and chemical and physical carcinogens due to enhanced defenses that 

include antioxidant184 and radioprotective114 activities,  as well as accelerated 

biotransformation and clearance of DNA-damaging agents185. Moreover, activation of the 

NRF2 transcriptional response appears to maintain ROS levels below those necessary for 

signaling to proteins critical for tumorigenesis, such as phosphatidylinositol-4,5-
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bisphosphate 3-kinase (PI3K), mitogen activated kinases, hypoxia inducible factor-1 and 

NF-κB186.  

On the contrary, in the early stages of tumor development, cancer cells with 

constitutive activation of NRF2 are selected as a means of enabling adaptation to a hostile 

microenvironment, chemotherapy, radiotherapy or high endogenous ROS levels. 

Additionally, in rapidly proliferating cells, NRF2 supports intermediary metabolism by 

enhancing the biosynthesis of nucleotides26 and amino acids187, but also generates 

metabolic imbalance and dependence on glutaminolysis, which could be therapeutically 

exploited188,189.  

Somatic loss-of-function mutations in KEAP1 or gain-of-function mutations in 

NFE2L2 are common in non-small cell lung cancer and some other cancers in which 

environmental factors are important etiological components190. A comprehensive catalogue 

of NRF2 mutations in The Cancer Genome Atlas (TCGA) database identified 226 unique 

NRF2-mutant tumors within 10,364 cases, with gain-of-function NRF2 mutations occurring 

in 21 out of 33 tumor types191. The frequent occurrence of such mutations suggests a 

potential benefit of NRF2 inhibitors in cancer treatment, triggering a search for NRF2 

inhibitors (Box 1). This is a completely open field for pharmacology and at this time is at 

the level of proof-of-concept research. Alternative approaches for NRF2 suppression 

include targeting proteins that confer dependence on NRF2 and/or are selectively expressed 

in KEAP1-mutant cancer cells. Examples include inhibitors of glutaminase188,189 and 

NR0B1, an atypical orphan nuclear receptor that participates in a multimeric protein 

complex to regulate transcription in KEAP1-mutant cells192. It should be noted however 

that no evidence exists to date that either KEAP1 or NFE2L2 mutation alone can instigate 

malignant transformation, but co-occurrence with oncogenic drivers seems necessary; PI3K 
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kinase pathway alterations having the strongest association193. Most tellingly, the 

hypomorphic “Keap1-knockdown” mouse in which NRF2 is globally upregulated does not 

spontaneously develop tumours194,195, whereas the simultaneous deletion of Keap1 and Pten 

in the murine lung promotes adenocarcinoma formation195. Importantly, the resulting 

tumors are characterized by an immunosuppressive microenvironment, which can be 

therapeutically exploited by use of immune checkpoint inhibitors195.  

It is clear that the context within which NRF2 is genetically activated is important 

in terms of tumorigenesis, as oncogene (K-RasG12D) activation of NRF2 signaling in rodents 

can enhance tumor development196 whereas genetic knockdown of Keap1 (also leading to 

activation of NRF2 signaling) strongly blunts Notch1-driven tumorigenesis197 as well as 

UV radiation-mediated cutaneous carcinogenesis51,198. Notably, in the latter model, the 

protective effect of KEAP1 knockdown against initiation of cutaneous carcinogenesis is 

abrogated by the simultaneous loss of NRF2199. This dichotomous role of NRF2 is 

supported by extensive experimental evidence in which its activation enhances antitumor 

immunity to prevent lung carcinogenesis, but only after tumor initiation accelerates 

malignant growth200. Also, Nrf2-knockout mice submitted to chemically-induced 

carcinogenesis exhibit an increased number of tumors (enhanced initiation) but of much 

smaller size (impaired progression) compared to wild-type littermates201. Hence, low NRF2 

activity facilitates initiation of carcinogenesis, whereas persistent constitutively high NRF2 

activity can drive cancer progression and resistance to therapy202. 

 

NRF2 modulators in clinical development 

Fumaric acid esters  
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Fumaric acid esters represent a group of NRF2 activators upon which industry is focusing 

huge effort. The most clinically successful example is DMF (compound 1, Figure 3A), 

which was approved in 1994 for the treatment of psoriasis and, based on its efficacy in the 

experimental autoimmune encephalomyelitis mouse model of multiple sclerosis203, was 

repurposed in 2014 by Biogen (Tecfidera) for the treatment of relapsing-remitting multiple 

sclerosis. Early studies in rodents preceding the discovery of NRF2 had reported that DMF 

is a robust inducer of the NRF2-transcriptional targets GST and NQO1204, and it was later 

shown that the DMF metabolite monomethyl fumarate (MMF, compound 2, Figure 3A) 

reacts with C151 in KEAP1, thereby activating NRF2203. Safety has been a priority since 

the discovery of the inducer activity of DMF, and it was noted that the concentrations of 

DMF required to obtaining significant enzyme inductions were well tolerated by rodents204. 

DMF exhibited a favorable safety and tolerability profile in two phase 3 trials205,206, and 

after its commercialization it has become one of the most successful new medicines in 

recent years. However, a drawback of Tecfidera is the occurrence of mild to moderate 

abdominal pain, flushing, diarrhea and nausea. While these adverse effects can be managed, 

a more serious symptom is the occurrence of leukopenia in patients with low leukocyte 

counts at the beginning of treatment. In fact, animals treated with DMF had much lower 

levels of granulocytes in their nervous system than those that did not receive the drug207. 

This effect is not related to NRF2 but is most likely due to activation of the 

hydroxycarboxylic acid receptor since mice lacking this protein had high levels of 

granulocytes regardless of whether they were treated with DMF207. These observations 

highlight the importance of carefully selecting the inclusion criteria for treatment. 

As mentioned above, DMF is metabolized in vivo to MMF, which inactivates 

KEAP1 through adduct formation at C151203. Because of this metabolic conversion, several 
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biopharmaceutical companies are now developing compounds with slow and sustained 

release of MMF that would show improved bioavailability and fewer side effects compared 

to DMF (Table 1). Alkermes (acquired by Biogen) has developed diroximel fumarate 

(ALK8700/BII089, compound 3, Figure 3A), an MMF prodrug with reduced 

gastrointestinal side effects that is now in a phase 3 clinical trial for multiple sclerosis	

(NCT03093324). XenoPort (acquired by Arbor Pharmaceuticals) has developed tepilamide 

fumarate, an MMF prodrug (XP23829, compound 4, Figure 3A). Compared to DMF, 

XP23829 has higher solubility and permeability, greater absorption following oral 

administration, improved efficacy and reduced gastrointestinal side effects in preclinical 

models, and is now in a phase 2 clinical trial for plaque psoriasis (NCT02173301). 

Catabasis is developing another chemically-linked conjugate of MMF and docosahexaenoic 

acid (CAT4001) with potential for enhanced cell targeting, efficacy, improved safety and 

tolerability compared to the effect of separate bioactive molecules. Specific enzymes 

release the two components inside the cell, where they simultaneously modulate multiple 

biological targets, including NRF2 and NFκB in cells and animal models, and show 

promise for the treatment of neurodegenerative diseases, such as FRDA and amyotrophic 

lateral sclerosis (ALS). A similar technology is being developed by V ClinBio Inc. in their 

conjugates of MMF and eicosapentaenoic acid (VCB101, compound 5, Figure 3A and 

VCB102) for the treatment of multiple sclerosis and psoriasis (Table 1).  

 

Sulforaphane 

A widely used naturally-occurring electrophilic activator of NRF2 is sulforaphane (SFN, 4‐

methylsulfinylbutyl isothiocyanate, compound 6, Figure 3A). This compound was initially 

isolated by Paul Talalay and Yuesheng Zhang as the principal inducer of the NRF2-target 
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enzyme NQO1 from extracts of Brassicaceae plants208, and interacts with C151 of 

KEAP114,209. Notably, SFN goes through the blood-brain barrier55 and has protective 

effects in numerous preclinical models of neurological conditions210. In a double-blind 

placebo-controlled clinical trial in young men with autism spectrum disorder, orally 

administered capsules of SFN-rich broccoli sprout extracts have shown significant 

improvement in behavioral measures as assessed by Aberrant Behavior Checklist and 

Social Responsiveness Scale; the total scores on these scales reversed toward pretreatment 

levels upon cessation of treatment211. Three-day-old broccoli sprouts are rich in 

glucoraphanin, a precursor molecule that is hydrolyzed by the plant enzyme myrosinase to 

release SFN and glucose212. A similar β-thioglucosidase enzyme is present in the gut 

microbiota and therefore, the actual levels of released SFN are highly dependent on dietary 

habits and microbiome composition, are affected by antibiotic treatments213 and display 

circadian rhythmicity214. Nevertheless, either as sprout extract or highly purified SFN, more 

than 500 subjects have received over 25,000 doses, demonstrating a high safety profile. 

There are over 20 currently ongoing clinical trials.  

Considering issues related to intellectual property surrounding a natural compound, 

the fact that SFN is unstable at room temperature, and the need to accurately control 

dosing, Evgen Pharma has developed a pharmaceutical form of SFN, SFX-01 (compound 

7, Figure 3A). SFX-01 is chemically synthesized SFN encapsulated in cyclodextrin to 

create a stable, solid-form pill or capsule with excellent bioavailablitity. SFX-01 is now 

being studied in clinical trials of subarachnoid hemorrhage (NCT02614742) and metastatic 

breast cancer (NCT02970682) (Table 1). Evgen also has a series of novel SFN-based 

analogs that are in preclinical evaluation. In addition, a number of nutraceutical companies 
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are producing preparations that contain NRF2 inducers, including SFN, with various 

degrees of standardization. One example is Prostaphane®, from the Nutrinov Laboratory, 

which is a stabilized free SFN, extracted from broccoli seeds with demonstrated benefits in 

managing biochemical recurrences after radical prostatectomy in a placebo-controlled 

clinical trial of prostate cancer215. The bioavailability and potency of both SFX-01 and 

Prostaphane® are equivalent to those of the much less stable SFN216. Another example is 

the encapsulated dietary supplement Avmacol (Nutramax Laboratories), which contains 

glucoraphanin from finely-milled broccoli seeds together with freeze-dried broccoli sprout 

powder to provide myrosinase. This supplement is currently in use in clinical trials to 

modulate disease symptoms and/or biomarkers related to autism spectrum disorder, 

schizophrenia and environmental pollution217. 

 

Cyanoenone triterpenoids 

Accumulating evidence suggests that fumaric acid esters, SFN and other small electrophiles 

that bind covalently to KEAP1 may benefit from a larger scaffold structure to confer better 

selectivity (and likely potency) and more controllable pharmacokinetic/pharmacodynamic 

properties. The development of pentacyclic Michael acceptor-bearing cyanoenone 

triterpenoids may fulfill these requirements. Initially developed by Michael Sporn, Gordon 

Gribble and Tadashi Honda from the natural product oleanolic acid218,219, these pentacyclic 

triterpenoids are the most potent NRF2 activators known to date220, are sensed by C151 in 

KEAP1, and are now under clinical development by Reata Pharmaceuticals and Kyowa 

Hakko Kirin Co., Ltd..  

 Two clinically advanced compounds, bardoxolone methyl (BARD) (compound 8, 

Figure 3A) and omaveloxolone (compound 9, Figure 3A), normalize metabolism, increase 
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mitochondrial energy production, boost cellular antioxidant capacity and lower ROS 

levels221 (Table 1). In preclinical studies, BARD or analogs have been shown to improve 

kidney function by reducing inflammation, fibrosis and oxidative stress and increasing the 

filtration surface area in the glomerulus222,223. With a modification of the selection criteria 

to exclude patients with signs of incipient heart failure (elevated B-type natriuretic peptide), 

BARD is now being tested in clinical trials for several rare conditions that are associated 

with chronic kidney disease, most of which have no approved treatments: these include 

Alport syndrome (NCT03019185), autosomal dominant polycystic kidney disease, IgA 

nephropathy, type 1 diabetes and focal segmental glomerulosclerosis (NCT03366337), in 

which pro-inflammatory and pro-fibrotic processes contribute to glomerulosclerosis and 

impaired kidney function224. BARD treatment has the potential to delay or prevent the 

decline in glomerular filtration rate that results in the need for dialysis or transplant in 

patients with Alport syndrome and other rare forms of chronic kidney disease (CKD). Thus, 

in a phase 2 clinical trial in patients with type 2 diabetes and CKD (NCT02316821), BARD 

treatment led to statistically significant increases in directly-measured glomerular filtration 

rate, and upon exclusion of patients at risk of fluid retention, was well tolerated. Based on 

these results, Kyowa Hakko Kirin has initiated a phase 3 clinical trial (NCT03550443) in 

diabetic patients with stage G3 or G4 CKD, with the support of the Japanese SAKIGAKE 

Designation system. 

 In addition, BARD is being studied in patients with pulmonary arterial hypertension 

(NCT03068130) and pulmonary arterial hypertension due to connective tissue disease with 

pulmonary arterial hypertension (CTD-PAH) (NCT02657356), which is a serious and 

progressive disease that leads to heart failure and death. The difference between CTD-PAH 

and idiopathic etiologies is largely attributed to the complex interplay between 
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inflammation, autoimmunity, and systemic vasculopathy that contribute to the pathogenesis 

of connective tissue disease. CTD-PAH patients have increased inflammatory processes 

due to upregulation of NF-κB225, are less responsive to existing vasodilator therapies than 

patients with the idiopathic PAH, and have a worse prognosis226. BARD was tested in 

CTD-PAH patients in a phase 2 study and is currently being tested in phase 3. 

Omaveloxolone is currently being tested in a registrational phase 2 clinical trial for patients 

with FRDA (NCT02255435), a genetic neuromuscular disorder in which NRF2 is 

downregulated176-178. Of note, there are no currently approved therapies for the treatment of 

FRDA227 (Table 1). 

 

Nitro fatty acids 

Nitrated derivatives of fatty acids (NO2-FA) are endogenous signaling mediators with anti-

inflammatory and anti-fibrotic activities in preclinical animal models of metabolic and 

inflammatory disease228. The nitroalkene group confers electrophilicity to their β-carbon, 

promoting the rapid formation of reversible NO2-FA Michael adducts with nucleophiles, 

such as cysteines, a modification termed nitroalkylation229,230. It has been shown that nitro 

oleic acid (NO2-OA, 9-nitro-octadec-9-enoic acid) reacts with cysteines in KEAP1, 

including C273 and C288, thereby activating NRF2231,232. The reversibility of this 

reaction229,230,233 prevents the possibility for accumulation of stable NO2-FA thiol adducts, 

which could lead to cytotoxicity. Indeed, phase 1 safety evaluation has demonstrated that 

the lead compound, CXA10 (10-NO2-OA, 10-nitro-octadec-9-enoic acid, a specific 

regioisomer of NO2-OA) (compound 10, Figure 3A) is safe in humans at 

pharmacologically active doses234. CXA10 is currently being developed by Complexa Inc. 
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as a treatment for focal segmental glomerulosclerosis and pulmonary arterial 

hypertension234 (Table 1). The synthesis and biological evaluation of nitroalkenes derived 

from α-tocopherol was also recently reported235. 

 

Hydroxylamine 

A special challenge is to deliver NRF2 activators that can pass the blood-brain barrier. The 

route of administration (injection, oral, topical) is also crucial for specific diseases. Othera 

Pharmaceuticals (now acquired by Colby Pharmaceutical Co.) is developing a di-

substituted hydroxylamine with antioxidant properties (OT551) for topical use that inhibits 

oxidative stress and disease-associated inflammation by targeting KEAP1 (compound 11, 

Figure 3A). In preclinical studies, an ophthalmic solution of this compound protected the 

retinal pigment epithelium and photoreceptors from oxidative damage and inflammation, 

and a phase 2 trial on age-related macular degeneration has demonstrated efficacy in 

preventing the progression of vision loss (NCT00485394) (Table 1). 

 

TFM735 

A high-throughput screening reporter strategy assessing the stability of a chimeric protein 

comprising the NRF2 N-terminal domain fused to LacZ (NRF2d-LacZ)236 identified 

TFM735 as a lead compound (compound 12, Figure 3A). TFM735 activates NRF2 in a 

C151-dependent manner, inhibits the synthesis of IL-6 and IL-17 from stimulated human 

peripheral blood mononuclear cells, and the progression of experimental autoimmune 

encephalomyelitis in mice237. This compound is currently in preclinical development by 

Mochida Pharmaceuticals for the treatment of multiple sclerosis (Table 1).  
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NRF2/KEAP1	protein-protein interaction inhibitors 

Recent attention has focused on the development of non-electrophilic non-covalent 

compounds that interfere with the direct protein-protein interaction (PPI) between KEAP1 

and NRF2238, or the PPI between KEAP1 and Cul3239. By interfering directly with the 

interaction between KEAP1 and NRF2 or Cul3, the compounds do not require a covalent 

binding component to their mode of action. There are potential advantages to this approach, 

including the scope to explore new chemotypes of NRF2 inducers, different 

pharmacodynamics due to a different mode of interaction with KEAP1 and different off-

target effect profiles due to a cysteine-independent binding mechanism. There is evidence 

that electrophilic and non-electrophilic (PPI) KEAP1 inhibitors differ in their spectrum of 

biological effects, an example being the ability of non-electrophiles to induce mitophagy in 

contrast to electrophiles such as SFN and DMF; this points towards potential differences in 

pharmacological activity and therapeutic utility between the two compound classes240.  

The design of PPI inhibitors has been guided by the availability of the crystal 

structure of the Kelch domain of KEAP1241-243 (Figure 3B). Several types of PPI inhibitors 

have been reported; the major chemical classes developed with input from the 

pharmaceutical industry are shown in Figure 3B. The naphthalene bis-sulfonamide 

compounds originated from a high-throughput screening campaign at Biogen244 and 

subsequently elaborated by Jiang et al.245 at China Pharmaceutical University to provide 

compound 13 (CPUY192018) and analogues. This bis-carboxylic acid compound is a high-

affinity ligand for KEAP1, which induced the expression of ARE-dependent genes at low 

micromolar concentrations. Astex and GlaxoSmithKline also identified sulfonamide-

containing lead compounds from an x-ray crystallography fragment-based screening 

program. The lead compounds in this case are exemplified by compound 14, a low 
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nanomolar inhibitor of the KEAP1-NRF2 PPI that increased the expression of the NRF2-

target gene NQO1 in treated COPD patient-derived epithelial cells. The compound was 

capable of reducing lung inflammation in rats after i.v. administration and effectively 

suppressed ozone-induced accumulation of leukocytes in bronchoalveolar fluid and 

restored GSH concentrations246. Compounds from this series have shown efficacy in 

several animal models of oxidative stress that simulate features of pulmonary disease and 

are currently being developed for clinical evaluation. Two further classes of mono-acidic 

PPI inhibitors have been developed which are not sulfonamides. The first class, developed 

at Rutgers by Hu et al.247 and elaborated by Evotec and UCB Pharma248, were the 

tetrahydroisoquinolines, e.g. compound 15, which were low micromolar inhibitors of the 

KEAP1-NRF2 PPI. The second class was developed by Toray Industries and RIKEN and 

incorporated an oxadiazole motif; compound 16 is an inhibitor of the PPI with binding 

activity in the micromolar range249. The highlighted compounds or their analogues have 

been co-crystallised with the KEAP1 Kelch domain; Figure 3B illustrates the occupancy of 

the binding site sub-pockets that compounds 13-16 achieve and provide insights into how 

these ligands may be refined in the future. 

New PPI inhibitors are also being developed by C4X Discovery using a 

combination of computational chemistry, ligand nuclear magnetic resonance (NMR) 

spectroscopy and protein crystallography approaches and by Keapstone, using a structure-

based drug design approach. Academic groups are also contributing to the pool of non-

electrophilic NRF2 inducers250,251. 

A significant challenge remains in making PPI inhibitors that possess suitable drug 

metabolism and pharmacokinetic properties for use in both peripheral and central nervous 

system applications, the latter being an area in which KEAP1 inducers with a strong safety 
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profile are required for chronic administration for conditions such as AD and PD. At this 

time, the potential advantage of improved target selectivity of the non-electrophilic PPI 

inhibitors is offset by the relatively high molecular weights of the current compounds, a 

requirement for blocking the large KEAP1-NRF2 interface, and the need for polar 

functional groups to confer tight KEAP1-binding affinity. Thus, many of the prototype 

compounds that were identified by in vitro studies, at present exhibit poor absorption, 

distribution, metabolism and excretion properties. For instance, the naphthalene bis-

sulfonamide 13 protects against dextran sodium sulfate (DSS)-induced colitis in mice, 

activates NQO1 expression in cultured NCM460 cells in the low micromolar range, and 

binds KEAP1 in vitro, demonstrating the offset between protein binding and biological 

activities252. 

The majority of the in vivo evaluations of PPI inhibitors have focused on peripheral 

inflammatory conditions. For example, the compound NK-252 (an analogue of 16) was 

identified by Toray Industries as a relatively weak KEAP1 inhibitor, but had a protective 

effect against H2O2-induced cytotoxicity and reduced the fibrosis score in rats fed with a 

choline-deficient L-amino acid-defined diet253, a model system for NASH. 

 

Targeting NRF2 with KEAP1-independent drugs 

Increasing evidence indicates that NRF2 exhibits multiple layers of regulation in addition to 

that exerted by KEAP1, such as transcriptional196, epigenetic254,255, covalent protein 

modification256,257, proteasome degradation in KEAP1-independent manner258-261, and 

regulation of NRF2-dimerizing partners that target binding to ARE sequences262,263. At the 

level of pharmacological development, a KEAP1-independent mechanism of ARE-

mediated gene regulation involves modulation of the transcriptional repressor BACH1 (i.e., 
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broad complex, tramtrack and bric à brac and cap’n’collar homology 1), which inhibits the 

transactivation of a subset of NRF2-regulated genes and more specifically HMOX128. VTV 

Therapeutics is now analyzing if this subset is sufficient to elicit therapeutic benefits. They 

have developed a novel class of non-electrophilic small molecules that inhibit BACH1 

binding to some ARE-driven genes independently of KEAP1264.  

 

Challenges and considerations 

Pharmacodynamics assessment  

Considering that NRF2 has a very short half-life, even after drug-induced stabilization, the 

most appropriate dosing regimen for a therapeutic benefit needs to be inferred by indirect 

indicators of its activation in the diseased organs. One possibility is to analyze drug 

distribution and NRF2 gene expression signatures in accessible cells or tissues (such as 

peripheral blood mononuclear cells, nasal lavage fluid cells, exfoliated bladder cells, buccal 

cells and skin) with the hope that the transcriptomic signature of NRF2 in these cells 

reflects local engagement in other tissues (such as the lung, liver, and brain)265-267. In the 

case of communities unavoidably exposed to harmful environmental chemicals, the urinary 

levels of their corresponding metabolites have been used as biomarkers of 

pharmacodynamic action mediated through NRF2268,269.  

Activation of the NRF2 pathway is characterized by a time-, tissue-, dose-, onset-, 

and duration-dependent differential gene expression. Table 2 shows the half-lives of a 

representative subset of NRF2-regulated gene products. As many of these proteins have a 

relatively long half-life, their biochemical activities are expected to last much longer than 

the time interval over which NRF2 is stabilized or the presence of its pharmacological 

activator, the latter of which is often cleared within several hours. As such, the 
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pharmacodynamics of NRF2-activating molecules are observed over much longer periods 

of time than the levels of NRF2, and do not correspond to the plasma drug concentrations. 

Thus, the NRF2 activator TBE-31, a tricyclic cyanoenone closely related to the 

triterpenoids described above, has a half-life of 10 h in murine skin and plasma51,270, 

whereas NRF2-dependent induction of NQO1 protein is still evident in the skin of the 

animals three days after the last dose of topically-applied drug51. Based on the fact that 

NRF2 activators lead to the “stimulation of the production or inhibition of factors which 

control the measured effect”, an “indirect pharmacodynamic response” model271,272 may be 

a more logical approach for testing the NRF2 activator pharmacodynamics towards clinical 

applications.  

The concentration and distribution of NRF2-activating drugs in the relevant tissue, 

as well as their solubility, cell permeability, metabolic stability, and protein binding, will 

also play a major role in the extent of NRF2 activation, ultimately leading to the desired 

long-lasting pharmacodynamic effects. Therefore, optimization of clinically meaningful 

drug exposure requires an analysis of dose-dependent gene regulation by a putative NRF2 

activator. Furthermore, NRF2 target engagement studies must consider patient age and 

performance status, as the ability of drugs to activate NRF2 or promote an “adaptive 

response” appears to be reduced in older and less healthy subjects. This was recently seen 

in a clinical trial of DMF in patients with relapsing-remitting multiple sclerosis, where it 

was found that the degree of induction of the NRF2 transcriptional target NQO1 negatively 

correlated with patient age, and that patients with higher NQO1 protein levels at 4-6 weeks 

after the start of therapy were more likely to show no evidence of disease activity during 

the following year267. 
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Drug selectivity  

The identification of highly reactive cysteines in KEAP1 was crucial for the understanding 

of the mechanism by which electrophilic compounds interact covalently with this ubiquitin 

ligase substrate adaptor. Structural information suggests that certain drugs acting on C151 

may disrupt the interaction with Cullin-3 (Cul3)/Rbx1273,274, thus leaving the KEAP1 pool 

saturated with bound NRF2 and allowing newly synthesized NRF2 to evade degradation: 

this was demonstrated using the model electrophile N-iodoacetyl-N-

biotinylhexylenediamine275. Other compounds may modify KEAP1 in a way that it is no 

longer capable of interacting with NRF2 at both the high- and low-affinity sites within the 

transcription factor. Notably, some electrophilic NRF2 activators, such as the cyclic 

cyanoenones bind to thiols covalently but do not form irreversible adducts276,277. 

Consequently, they combine the desirable features of both irreversible covalent drugs (i.e., 

high potency and sustained target engagement), as well as that of reversible non-covalent 

drugs (i.e., absence of permanent modification and therefore possible destruction or 

immunogenicity of their protein targets)278.  A potential drawback of such molecules is that 

they might react with redox-sensitive cysteines in proteins other than KEAP1, hence 

compromising their function. The issue of specificity of thiol-reactive molecules indicates 

that the window that allows for therapeutically relevant KEAP1 modification in the absence 

of thiol modifications within other proteins needs to be determined for each compound 

(Figure 1B). Such a hierarchical presentation of target cysteines within KEAP1 as well as 

other thiol-containing non-target proteins has been termed the “cysteine code”279 and is 

influenced by both the chemistry and dose of inducer280. 

A significant potential advantage of KEAP1-NRF2 PPI inhibitors is improved target 

selectivity. However, off-target effects cannot be completely excluded a priori for any 



37	
	

small molecule. In addition, KEAP1 targets proteins other than NRF2281 for ubiquitination, 

and these might also be affected. One of the few types of PPI inhibitors for which off-target 

selectivity has been evaluated are the potent mono acidic sulfonamides, for example, 

compound 10 appeared to be relatively selective for KEAP1, showing modest activity in a 

GlaxoSmithKline enhanced cross-screen panel of in vitro assays to identify potential off-

target effects246. 

 

Animal models  

A problem that precludes successful drug development for most chronic diseases is the 

incomplete reproducibility of human pathologies in animal models282. This issue may be 

associated with the lack of a very important hallmark of human degenerative diseases, 

namely the progressive loss of homeostatic functions associated with NRF2. In fact, 

although much work still needs to be done in humans, evidence from animal studies 

indicates that NRF2 activity declines with aging and that the pharmacological or genetic 

up-regulation of NRF2 increases life-span and improves health-span283,284. The lack of an 

“NRF2 variable” in animal models of chronic diseases is well exemplified in murine 

models of AD. The current models are based on the assumption that expression of toxic 

APP or TAU mutant proteins in an otherwise healthy animal background replicates the 

human pathology. While these models provide valuable information about the onset and 

progression of the proteinopathy, they have systematically failed to translate therapeutic 

success to humans. The reasons for this failure may be related to the fact that these models 

do not consider the disease-related decline of homeostatic functions such as those related to 

NRF2. More sophisticated preclinical models will require a reverse translational approach 

in which not only the anatomopathological features of a specific disease are replicated in 
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animals, but also the compromised redox, inflammatory or protein homeostasis. Thus, the 

NRF2-knockout mouse shares many alterations common to AD patients or even aged 

individuals156. Recent studies have demonstrated that compared to wild-type animals, 

NRF2-knockout mice fed high-fat diet display greater neurovascular dysfunction, blood-

brain barrier disruption, neuroinflammation, amyloidogenic gene expression, and cognitive 

decline, mimicking many of the phenotypic changes that occur with aging285. The 

introduction of low NRF2 expression as a variable to reduce homeostatic responses may be 

useful to improve current models of chronic diseases towards better therapeutic outcomes. 

Considering the slow decline of NRF2 activity with aging, the heterozygous Nrf2+/- mouse 

might be a suitable model to replicate both reduced basal expression and pharmacological 

upregulation. 

 

Cancer risk 

From a pharmacological point of view, it is necessary to determine how significant is the 

risk posed by increasing NRF2 levels beyond a safe threshold of causing cancer (Figure 4). 

The impact of somatic mutations that promote NRF2 stability in cancer cells is markedly 

different to that caused by pharmacologic activation of NRF2. Thus, somatic mutations in 

KEAP1 and NFE2L2 result in high, unrestrained NRF2 activity which is entirely distinct 

from the pulsatile activation caused by pharmacologic administration of NRF2 activators. 

Kinetic features such as amplitude and areas under the curve, reflecting intensity and 

duration of NRF2 signaling, are vastly different in settings of activation by genetic versus 

pharmacological means202,286. Moreover, gene loss or inactivating mutations in KEAP1 do 

not appear to have the same effect as pharmacological inhibition of this protein. Thus, 

KEAP1 loss increased the levels of NRF2 but also several oncogenic targets of this E3 
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ligase adapter, including inhibitor of NF-κB kinase subunit beta (IKKβ) and B-cell 

lymphoma 2 (BCL2) that might be at least partially responsible for malignant 

transformation. Accordingly, in a panel of cell lines with functional KEAP1, a well-

established NRF2 activator, the BARD analog RTA-405, increased NRF2 but not IKKβ or 

BCL2 levels, and did not confer a growth or survival advantage to tumor cells287. 

While at the present time a cancer risk from NRF2 activators cannot be dismissed, it 

is encouraging to see that a meta-analysis of a phase 3 trial of DMF has shown 

no difference in the cancer rate between the placebo and DMF-treated groups288.  It is 

also important to note that some NRF2–activating drugs may reduce this risk if they have 

additional targets with antitumor effects. Thus, DMF was recently found to inhibit 

GAPDH289, and it is possible that such inhibition may lead to energetic crisis in highly 

glycolytic KRAS or BRAF mutant cancer cells thus preventing tumor development as shown 

for vitamin C290. 

 

Outlook 

A hallmark of many chronic diseases is the loss of homeostatic responses such as redox 

signaling, metabolic flexibility, controlled inflammation and proteostasis. The 

multifactorial nature of these complex diseases could be targeted with one single hit at the 

transcription factor NRF2 as its activation elicits beneficial comprehensive, “multi-target” 

and long-lasting cytoprotective effects. Slowly but steadily biopharmaceutical companies 

are developing drugs that target KEAP1, the main regulator of NRF2 even though the 

peculiarity of the KEAP1/NRF2 system makes this approach particularly challenging for 

monitoring target engagement and off-target effects. In addition, the concern about an 

increased cancer risk needs to be definitively excluded. Over the next few years, the 
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ongoing clinical trials will undoubtedly provide significant advances in answering these 

questions. 

 

Box 1. Emergence of NRF2 inhibitors for cancer treatment 

Somatic mutations in the KEAP1/NRF2 axis have been found in several tumor types193, 

suggesting a potential benefit of NRF2 inhibitors in cancer treatment. Following ligand-

mediated receptor activation and binding to the glucocorticoid response element, agonists 

of the glucocorticoid receptor, such as dexamethasone, inhibit the transcriptional activity of 

NRF2, at least on the GSTA2 gene291. Agonists of the nuclear receptors retinoic acid 

receptor alpha (RARα) and retinoid X receptor alpha (RXRα), including all-trans-retinoic 

acid, also inhibit the transcriptional activity of NRF2 in an ARE-reporter cell line and in the 

small intestine of mice fed a vitamin A-deficient diet292,293. It is likely that these 

mechanisms of regulation through nuclear receptors are not specific for NRF2, though 

RXRα has been reported to interact directly with NRF2293. 

Among pharmacological agents, brusatol, a quassinoid extracted from Brucea 

javanica, attracted initial attention as it reduced the expression of an ARE-luciferase 

reporter and sensitized a broad spectrum of cancer cells to cisplatin in culture and in 

xenografts294. However, it is now recognized that brusatol is a general inhibitor of protein 

synthesis, thus leading to the preferential inhibition of short-lived proteins, including but 

not limited to NRF2295,296. A similar concern was raised after the identification of the 

febrifugine derivative halofuginone in a high-throughput inhibitor screen in chemo- and 

radio-resistant cancer cells297. Halofugizone induced a cellular amino acid starvation 

response that repressed global protein synthesis and rapidly depleted NRF2 and other 
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proteins. The flavonoid luteolin was reported to accelerate the turnover of NRF2 mRNA 

and thus elicit a strong reduction of NRF2 protein and mRNA levels, and sensitize cells to 

anticancer drugs298. However, subsequent studies provided conflicting results as they report 

that luteolin is an NRF2 activator299,300. Another flavonoid, wogonin, has also yielded 

conflicting results301,302. The coffee alkaloid trigonelline inhibited the nuclear accumulation 

of NRF2 protein303 and reduced NRF2-dependent proteasome activity in several pancreatic 

cancer cell lines304. Nevertheless, these effects need to be addressed in a wider range of cell 

types before being taken to preclinical studies. 

Targeting the interaction between NRF2 and sMAF proteins might be a promising 

strategy. Thus, a quantitative high-throughput screen identified a thiazole-indoline 

compound as an NRF2 inhibitor, and medicinal chemistry optimization led to compound 

ML385 that was found to bind the C-terminal domain of NRF2 and interfere with the 

formation of the NRF2/sMAF protein heterodimer that is required for activation of ARE-

driven gene expression305. Further work is needed to determine if ML385 is selective for 

NRF2/sMAF interaction or also affects other basic-region leucine zipper transcription 

factors. Moreover, this compound elicits a reduction of NRF2 protein levels, and therefore 

additional mechanisms of NRF2 regulation may operate. Other NRF2 inhibitors with 

unknown mechanism of action include malabricone A306, ochratoxin A307 and AEM1308. 

However, these compounds do not appear to be specific for NRF2 inhibition either. 
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Glossary terms 

Antioxidant Response Element (ARE) 

Specific DNA sequences, which are present in the promoter regions of NRF2-target genes. 

The ARE was discovered before NRF2, and its name originates from the fact that it was 

first identified in the promoter regions of genes that are induced by phenolic antioxidants.  

 

Autophagosome 

A spherical double-layer membrane structure with the cell. The autophagosome is the key 

structure in macroautophagy, a type of intracellular degradation process. 

 

Clara cells 

Dome-shaped cells found in the bronchioles of the lungs. 

 

Chronic Obstructive Pulmonary Disease 

Progressive lung disease including emphysema, chronic bronchitis, and refractory (non-

reversible) asthma. 

 

Emphysema 

Progressive lung disease that causes shortness of breath due to over-inflation of the alveoli.  
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Alport Syndrome 

Genetic disorder of the glomerular basement membrane, part of the glomerular filtration 

unit, characterized by kidney disease, hearing loss, and eye abnormalities. 

 

Gluconeogenesis 

Metabolic process that generates glucose from non-carbohydrate carbon substrates, such as 

lactate, glycerol, and glucogenic amino acids. 

 

Interferonopathies 

Mendelian disorders associated with an upregulation of interferon. 

 

Proteostasis 

Protein homeostasis. 

 

Redox stress 

An imbalance between oxidants and antioxidants in favor of the oxidants, leading to a 

disruption of redox signaling and control, and/or molecular damage. 

 

 

Abbreviations 

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; ARE, antioxidant response 

element; BACH1, broad complex, tramtrack and bric à brac and cap’n’collar homology 1; 

BARD, bardoxolone methyl; BTB, Bric-à-Brac domain of KEAP1; CKD, chronic kidney 
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disease; COPD, chronic obstructive pulmonary disease; CTD, connective tissue disease; 

DMF, dimethyl fumarate; FA, fatty acid; FRDA, Friedreich's ataxia; GAPDH 

glyceraldehyde-3-phosphate dehydrogenase; GSH, reduced form of glutathione; GST, 

glutathione S-transferase; HMOX1, heme oxygenase 1; IVR, intervening region of KEAP1; 

KEAP1, Kelch-like ECH-associated protein 1; LC3, microtubule Associated Protein 1 

Light Chain 3 Alpha; MMF, monomethyl fumarate; mtDNA, mitochondrial DNA; 

NADPH, reduced form of nicotinamide adenine dinucleotide phosphate; NF-κB, nuclear 

factor-kappaB; NO2-FA, Nitrated derivatives of fatty acids; NQO1, NAD(P)H:quinone 

oxidoreductase 1; NRF2, Nuclear factor (erythroid-derived 2) p45-related factor 2; PAH, 

pulmonary arterial hypertension; PD, Parkinson’s disease; PPI, protein-protein interaction; 

ROS, reactive oxygen species; SFN, sulforaphane; sMAF, small musculoaponeurotic 

fibrosarcoma oncogene homolog; SQSTM1, sequestosome 1; STING, stimulator of 

interferon genes;  UBA, ubiquitin association domain of SQSTM1. 
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Table 1. Summary of the NRF2 drug discovery pipeline sponsored by biopharmaceutical 
companies. Abbreviations: ALS, amyotrophic lateral sclerosis; CKD, chronic kidney 
disease; COPD, chronic obstructive pulmonary disease; CTD, connective tissue disease; 
ER+, estrogen receptor positive; FRDA, Friedreich’s ataxia; FTD, frontotemporal dementia; 
HD, Huntington’s disease; IgA, immunoglobulin A; ILD, interstitial lung disease; ND, 
neurodegenerative diseases; PAH, pulmonary arterial hypertension; PD, Parkinson’s 
disease; T2DM, type 2 diabetes mellitus. 
 
 

Company/ Molecule Disease Development 
stage 

Comments Trial /Reference 

BIOGEN: 
Dimethyl fumarate (DMF) 

Multiple Sclerosis Marketed 
First marketed NRF2-targeting drug. 
Commercial name Tecfidera.  
Approved by FDA in 2013. 

PROTEC/ 
NCT01930708 

Psoriasis Marketed Approved in Germany in 1994. 
Commercial name Fumaderm. Ref. 309 

BIOGEN: 
ALK8700/BII089 Multiple Sclerosis Phase 3 

Prodrug of monomethyl fumarate. 
Evaluation of tolerability of ALKS8700 
and DMF.  
Estimated completion in 2019. 

EVOLVE-MS-2/ 
NCT03093324 

REATA 
PHARMACEUTICALS: 
Bardoxolone methyl 
(BARD, RTA402) 
 

CTD-PAH Phase 3 
Leading synthetic triterpenoid.  
Efficacy and safety in CTD-PAH. 
Estimated completion in 2020. 

CATALYST/ 
NCT02657356 

Pulmonary 
hypertension-ILD Phase 3 

Leading synthetic triterpenoid.  
Long-term safety and tolerability in 
pulmonary hypertension.  
Estimated completion in 2021. 

RANGER/	
NCT03068130 

Alport syndrome Phase 2/3 
Leading synthetic triterpenoid.  
Safety and efficacy.  
Estimated completion in 2019. 

CARDINAL/ 
NCT03019185 

Autosomal Dominant 
Polycystic Kidney 
Disease, IgA 
Nephropathy, Type 1 
Diabetes, Focal 
Segmental 
Glomerulosclerosis  

Phase 2 

Leading synthetic triterpenoid. 
 Safety and efficacy in patients with rare 
chronic kidney diseases.  
Estimated completion in 2019. PHOENIX/ 

NCT03366337 

REATA 
PHARMACEUTICALS: 
Omaveloxolone (RTA408) 

FRDA Phase 2 
Second-generation synthetic triterpenoid. 
Safety, efficacy, and pharmacodynamics. 
Estimated completion in 2020. 

MOXIe/ 
NCT02255435 

KYOWA HAKKO 
KIRIN: 
Bardoxolone methyl 
(BARD, RTA402) 
 

T2DM, CKD 

Phase 2 
(completed) 

Leading synthetic triterpenoid. 
Demonstrated increases in directly-
measured glomerular filtration rate. 
Received the Japanese SAKIGAKE 
Designation for the treatment of diabetic 
kidney disease. 

TSUBAKI/ 
NCT02316821 

Phase 3 

Leading synthetic triterpenoid. Primary 
end point: time to onset of a ≥30% 
decrease in estimated glomerular filtration 
rate from baseline or end-stage renal 
disease.  
Estimated completion in 2022. 

AYAME/	
NCT03550443 

EVGEN PHARMA: 
SFX01 

Subarachnoid 
Hemorrhage Phase 2 

Cyclodextrin-encapsulated sulforaphane. 
Safety, tolerability, pharmacokinetics and 
pharmacodynamics.  
Estimated completion in 2019. 

SAS/ NCT02614742 

ER+ Metastatic Breast 
Cancer Phase 2 

Cyclodextrin-encapsulated sulforaphane. 
Safety and efficacy when used in 
combination with aromatase inhibitors, 
tamoxifen and fulvestrant.  
Estimated completion in 2019. 

STEM/ 
NCT02970682 

COMPLEXA: 
CXA10 

Primary Focal 
Segmental 
Glomerulosclerosis 

Phase 2 

10-nitro-octadec-9-enoic acid, a regio-
isomer of nitro-oleic acid.  
Two titration regimens of oral CXA-10. 
Estimated completion in 2019. 

FIRSTx/ 
NCT03422510 
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Pulmonary Arterial 
Hypertension Phase 2 

10-nitro-octadec-9-enoic acid, a regio-
isomer of nitro-oleic acid.  
Safety, efficacy and pharmacokinetics of 
CXA-10 on stable background therapy. 
Estimated completion in 2019. 

PRIMEx/ 
NCT03449524 

ARBOR 
PHARMACEUTICALS: 
XP23829 

Psoriasis Phase 2 
(completed) 

Tepilamide fumarate.  
Positive results disclosed in 2015 on 
efficacy as a potential treatment for 
moderate-to-severe chronic plaque 
psoriasis. 

NCT02173301 

COLBY 
PHARMACEUTICALS: 
OT-551 

Dry Eye Macular 
Degeneration 

Phase 2 
(completed) 

Tempol hydroxylamine prodrug.  
Positive results in safety and tolerability. 
OT-551 reduced vision loss and conserved 
visual acuity. 

OMEGA/ 
NCT00485394 

VTV THERAPEUTICS: 
HPP971 

Immunological 
Disorders, Bone, Eye, 
Lung, Blood diseases 

Preclinical 

Inhibitor of BACH1 that induces 
expression of HMOX1 in and NRF2-
dependent manner. Ref. 264 

V CLINBIO: 
VCB-101 Multiple Sclerosis 

Preclinical 

Glycerol conjugate of monomethyl 
fumarate and eicosapentaenoic acid https://www.vclinbi

ollc.com V CLINBIO: 
VCB-102 Psoriasis Glycerol conjugate of monomethyl 

fumarate and docosahexaenoic acid 

GlaxoSmithKline: 
Compound A COPD Preclinical 

Potent and selective PPI inhibitor of the 
KEAP1 Kelch/NRF2 interaction in human 
bronchial epithelial cells and COPD 
patients-derived lung cells. 

Ref. 246 

MOCHIDA: 
TFM-735 Multiple Sclerosis Preclinical 

Potent NRF2 inducer that inhibits 
inflammatory cytokine production and 
disease progression in mice with 
experimental autoimmune 
encephalomyelitis. 

Ref. 237 

CATABASIS: 
CAT4001 FRDA, ALS Preclinical 

Conjugate of MMF and docosahexaenoic 
acid. 

https://www.catabas
is.com/CATB-2017-
IARC-Poster-
Reilly.pdf 

C4X DISCOVERY: 
ML334 and derivatives ND, T2DM, COPD Preclinical 

PPI inhibitors identified through a high-
throughput screen using a fluorescence 
polarization assay. 

Ref. 247 

KEAPSTONE 
THERAPEUTICS: 
KEAP1 inhibitors 

PD, ALS Preclinical 
Chemical series of KEAP1 inhibitors 
developed at the Sheffield Institute for 
Translational Neuroscience. 

https://www.keapsto
ne.com 

DAIICHI SANKYO CO: 
RS9 Retinovascular disease Preclinical NRF2 activator derived from products of 

microbial transformation. Ref. 310 

ACLIPSE 
THERAPEUTICS: 
M102 

ALS and other ND Preclinical 
Selective activator of NRF2 and HSF1 
showing disease modifying effects in 
ALS. 

https://www.aclipset
herapeutics.com 
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Table 2. Half-lives and functions of representative proteins whose genes are transcriptionally 
regulated by NRF2. 
 
Gene Product Function Half-life (h) Ref. 
Biotransformation and detoxification 

AHR Aryl Hydrocarbon Receptor Regulation of xenobiotic 
detoxifying genes 7.7-9.7 311 

CYP1B1 Cytochrome P450, B1 Xenobiotic detoxification 16.57 ± 3.00 312	
UGT1A1 UDP-Glucuronosyl Transferase 

1, A1 
Detoxification reactions based 
in glucuronidation of small 
lipophilic molecules 

∼10 313 

GSTM1 Glutathione S-Transferase, Mu 
1  

Detoxification of carcinogens, 
therapeutic drugs, xenobiotics and 
electrophiles by conjugation with 
glutathione 

44.69 ± 4.56 312 

ABCB6 ATP-Binding Cassette, B6 Mitochondrial ABC transporter 
involved in heme synthesis 

∼24 314 

ABCC1 ATP-binding Cassette, C1 Organic anion ABC  transporter. 
Multi-drug resistance 

37.15 ± 8.03 312 

CBR1 Carbonyl Reductase 1 Reduction of quinones, 
prostaglandins, menadione, 
various xenobiotics. 

52.92 ± 15.73  312	

EPHX1 Epoxide Hydrolase 1 Detoxification of polycyclic 
aromatic hydrocarbons 

27.79 ± 3.40 312 

ALDH3A2 Aldehyde Dehydrogenase 3, A2 Detoxification of aldehydes 
generated by alcohol metabolism 
and lipid peroxidation 

87.00 ± 17.27 312	

ADH7 Alcohol Dehydrogenase, class 4 Detoxification of aliphatic 
alcohols, hydroxysteroids, and 
lipid peroxidation products. 

47.93 ± 7.31 312	

NQO1 NAD(P)H:Quinone 
Oxidoreductase 1 

Reduction of quinones to 
hydroquinones 

59.37 ± 13.54 312 

Antioxidant enzymes 
GPX4 Glutathione Peroxidase 4 Detoxification of hydrogen 

peroxide, organic hydroperoxides, 
and lipid peroxides 

∼18 315 

GSR1 Glutathione Reductase 1 Conversion of glutathione 
disulfide (GSSG) to the reduced 
glutathione (GSH) 

43.87 ± 6.41 312 

TXN1 Thioredoxin 1 Reduction of other proteins by 
cysteine thiol-disulfide exchange 

53.28 ± 5.43 312 

PRDX1 Peroxiredoxin 1 Reduction of hydrogen peroxide 
and alkyl hydroperoxides. 

54.41 ± 3.62 312 

SRXN1 Sulfiredoxin 1 Reduction of cysteine-sulfinic 
acid formed in peroxiredoxins 

9.50 ± 1.72 312 

Carbohydrate metabolism 
G6PD Glucose-6-Phosphate 1-

Dehydrogenase 
Production of NADPH though the 
conversion of glucose 6-
phosphate to 6-phosphogluconate 
in the Pentose Phosphate Pathway 

46.33 ± 7.43 312 

PGD 6-Phosphogluconate 
Dehydrogenase 

Production of NADPH though the 
conversion of 6-
phosphogluconate to ribulose 5-
phosphate in the Pentose 
Phosphate Pathway 

51.26 ± 7.72 312 
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TALDO1 Transaldolase 1 Interconversion of 
monosaccharides in the Pentose 
Phosphate Pathway. It links this 
pathway to glycolysis. 

63.58 ± 3.83 312 

TKT Transketolase 1 Interconversion of 
monosaccharides in the Pentose 
Phosphate Pathway. It links this 
pathway to glycolysis. 

81.32 ± 11.44 312 

ME1 Malic Enzyme 1 Production of NADPH through 
oxidative decarboxylation of 
malate to pyruvate 

363.84 315 

UGDH UDP-Glucose Dehydrogenase Conversion of UDP-glucose to 
UDP-glucuronate for biosynthesis 
of glycosaminoglycans 

37.24 ± 3.60 312 

Lipid metabolism 
ACOT7 Acyl-CoA Thioesterase 7 Long-chain acyl-CoA hydrolase 148.61 315 
ACOX1 Acyl-CoA Oxidase 1 Peroxisomal fatty acid beta-

oxidation 
32.10 ± 4.02 312 

SCD2 Stearoyl-CoA Desaturase-2 Synthesis of unsaturated fatty 
acids. 

∼3.5  316 

Heme and iron metabolism 

HMOX1 Heme Oxygenase 1 

Heme catabolism. Release of anti-
inflammatory carbon monoxide 
and antioxidant redox cycling 
biliverdin 

∼15 317 

BLVRA Biliverdin Reductase A ROS detoxification though 
biliverdin/bilirubin redox cycle 

56.05 ± 8.21 312,318 

BLVRB Flavin Reductase Oxidoreductase of 
methemoglobin 

42.66 ± 8.75 312 

FECH Ferrochelatase Heme biosynthesis 35 319 
FTH1 Ferritin Heavy Chain Storage of iron in a soluble and 

nontoxic state 
16.63 ± 1.68 312 

FTL1 Ferritin Light Chain Storage of iron in a soluble and 
nontoxic state 

30.74 312 

Mediators of inflammation 
PLA2G7  Phospholipase A2, group VII Degradation of platelet-activating 

factor 
6.14 312 

PTGR1 Prostaglandin Reductase 1 Inactivation of leukotriene B4 90.68 312 

CEBPB CCAAT/Enhancer-Binding 
Protein β 

Regulation of genes involved in 
immune and inflammatory 
responses 

8.59 312 

Regulation of NRF2 

KEAP1 Kelch-like ECH-Associated Protein 
1 

Negative feedback for regulation 
of NRF2 stability 12.7 38 

NFE2L2 Nuclear Factor (Erythroid-derived 
2)-Like 2, (NRF2) 

Master regulator of cellular 
homeostasis (about 250 genes) 0.33 320,321 

Protein degradation 

LAMP2A Lysosome-associated membrane 
protein 2 

Chaperone mediated autophagy 75–110 322 

SQSTM1 Sequestosome 1 (p62) Macroautophagy 6-24  
323 

PSMB1 Proteasome subunit beta type-1 Core subunit of the proteasome 
20S 133  

324 
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Figure 1. Regulation of NRF2 by KEAP1 and its pharmacological targeting. A, 
Representation of a single particle electron microscopy image of the KEAP1 dimer (grey 
surface)13 with the crystal structures of the BTB domain (red ribbons; PDB Ref 5NLB) and 
Kelch-repeat domains (green ribbons; PDB Ref 1ZGK)241 inserted for illustrative purposes. 
The reactive cysteines C151 and C613 are shown as blue spheres. The precise positions of 
the C226, C278, and C288 are not known, but they are all located in the IVR domain of 
KEAP1. The KEAP1 homodimer binds NRF2 at two motifs with low affinity (29-DLG-31) 
and high affinity (79-ETGE-82) and targets this transcription factor for ubiquitination and 
proteasomal degradation. Current strategies to disrupt this interaction include: electrophiles 
that chemically modify sulfhydryl groups of at least cysteines C151, C273, and C288 in 
KEAP1; PPI inhibitors that alter the docking of NRF2 to KEAP1. B, Electrophiles modify 
cysteine residues in sensitive proteins. Since KEAP1 is very sensitive to thiol reaction, 
electrophilic compounds easily induce KEAP1 modification. The window that allows 
therapeutic KEAP1 modification in the absence of unspecific thiol modifications within 
other proteins is represented in the pink area.  
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Figure 2. Expression of KEAP1 and NRF2 messenger RNAs in human brain and blood. A, 
The mRNAs for KEAP1 and NFE2L2 are in the 64th and 98th percentile of abundance of 
the total transcriptome of the brain. Note that KEAP1 mRNA levels are lower than NFE2L2 
mRNA levels as would be expected since KEAP1 protein has a slower turnover (Table 2). 
B, Differential distribution of the mRNA for KEAP1 and NFE2L2 in human gray matter 
from mature brain specimens after removal of meninges and blood clots325. Both transcripts 
are higher in astrocytes and microglia compared to neurons. For A and B, data were 
obtained from the Brain-RNAseq database. FPKM, Fragments Per Kilobase Million. KDE, 
Kernel density estimation; for details see reference326. These values are calculated using the 
function ‘density’ of the statistical software package ‘R’ (http://www.r-project.org/. C and 
D, The mRNA expression of KEAP1 and NFE2L2 in some hematopoietic cells. The size 
and color of the dots correlates with the abundance of either KEAP1 (C) or NFE2L2 (D) 
mRNAs. Again, mRNA encoding KEAP1 is less abundant than that for NRF2. The relative 
expression of KEAP1 is low in monocytes, neutrophils and lymphocytes and high in the 
erythroid lineage while NFE2L2 exhibits the opposite trend. For C and D, data were 
obtained from the normal hematopoiesis samples of the Bloodspot database327.  
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Figure 3. A. Crystal structure of the KEAP1 BTB domain (from PDB Ref 5NLB; residues 
49-180); the protein is shown as a dimer in a surface representation (lefthand side blue, 
righthand side grey) with the visible C151 shown in purple. The electrophilic motif of 
selected C151-interactive ligands is indicated by a purple circle; B. Crystal structure of the 
Kelch domain of KEAP1 (from PDB Ref 4XMB; residues 322-609)241; the protein is 
shown in a surface representation and the sub-pockets245 of the protein-protein interface are 
colored as follows: P1 sub-pocket: red (residues 415, 461, 462, 478, 483, 508); P2: blue 
(363, 380, 381, 414); P3: yellow (364, 509, 556, 571, 602, 603); P4: green (334, 572, 577); 
P5: cyan (525, 530, 555). Sub-pocket occupancy for the ligands 1-4 was determined from 
crystal structures 4XMB (by analogy to the bis-amide analogue), 5FNU, 4L7B and 3VNH 
respectively. 
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Figure 4. Modulation of cancer risk according to status of NRF2. Low NRF2 levels result 
from aging decline, functional haplotypes of single nucleotide polymorphisms in the 
NFE2L2 gene promoter and by microRNA regulation. At least three factors contribute to 
increased risk of cancer initiation: uncontrolled redox signaling, increased exposure to 
oxidant genotoxicity, and dampened detoxification of environmental carcinogens. By 
contrast, over-activation of NRF2 by somatic mutations in NFE2L2 or KEAP1 or by 
collaboration with the indicated oncogenic signaling pathways increase NRF2 levels and 
promote carcinogenesis because these cells have a selective advantage to survive high ROS 
levels as well as to resist chemo- and radiotherapy. Pharmacological activation of NRF2 for 
therapy of chronic diseases should not exceed the safe therapeutic window. At this time, 
there is no evidence that pharmacological agents can produce the persistent and strong 
effects equivalent to those of somatic mutations in NFL2E2 and KEAP1 but based on 
preclinical proof-of-concept studies dosing of specific NRF2 activators should be very 
carefully monitored in order to assess potential cancer risk. 


