27 research outputs found

    Nutrients (N, P, K, Na) and warming affect heterotrophic respiration in temperate forest litter

    Get PDF
    At present, ecosystems are facing changes caused by global warming and anthropogenic impacts on geochemical cycles. Both temperature and nutrient availability affect litter decomposition; however, little is known about their simultaneous effect on litter decomposition in temperate forests, especially for nutrients such as Na and K. To address this perspective, we investigated how changes in N, P, Na and K supply and increased temperature affect litter decomposition measured as respiration. Moreover, the study determines what changes can be expected in the functioning of two forest types of different fertility (deciduous and coniferous). The respiration measurements were conducted in the laboratory in mesocosms filled with litter from deciduous (oak-hornbeam) and coniferous (mixed pine-oak) forests fertilized by N, P, K, and Na. The experiment was conducted at ambient (14 C^{\circ}C; oak-hornbeam and mixed pine-oak litter) and increased temperatures (22 C^{\circ}C; oak-hornbeam litter). The respiration of oak-hornbeam litter increased with increasing temperature, with Q10Q_{10} values ranging from 1.49 to 2.14. Our results showed different responses of respiration to nutrient addition between temperatures and litter types. In oak-hornbeam, at 14 C^{\circ}C, the addition of N, P and K decreased respiration, whereas at 22 C^{\circ}C, such an effect was noted only under N application, and P and Na addition increased respiration. In mixed pine-oak litter at 14 C^{\circ}C, respiration decreased after Na addition, and other nutrients had no effect. Together, our results suggest that forecasting the impact of nutrient deposition on ecosystem functioning should consider temperature rise as a factor altering ecosystem responses to fertilization in future research

    Oxygen and temperature affect cell sizes differently among tissues and between sexes of Drosophila melanogaster

    Get PDF
    Spatio-temporal gradients in thermal and oxygen conditions trigger evolutionary and developmental responses in ectotherms’ body size and cell size, which are commonly interpreted as adaptive. However, the evidence for cell-size responses is fragmentary, as cell size is typically assessed in single tissues. In a laboratory experiment, we raised genotypes of Drosophila melanogaster at all combinations of two temperatures (16 C^{\circ}C or 25 C^{\circ}C) and two oxygen levels (10% or 22%) and measured body size and the sizes of cells in different tissues. For each sex, we measured epidermal cells in a wing and a leg and ommatidial cells of an eye. For males, we also measured epithelial cells of a Malpighian tubule and muscle cells of a flight muscle. On average, females emerged at a larger body size than did males, having larger cells in all tissues. Flies of either sex emerged at a smaller body size when raised under warm or hypoxic conditions. Development at 25 C^{\circ}C resulted in smaller cells in most tissues. Development under hypoxia resulted in smaller cells in some tissues, especially among females. Altogether, our results show thermal and oxygen conditions trigger shifts in adult size, coupled with the systemic orchestration of cell sizes throughout the body of a fly. The nature of these patterns supports a model in which an ectotherm adjusts its life-history traits and cellular composition to prevent severe hypoxia at the cellular level. However, our results revealed some inconsistencies linked to sex, cell type, and environmental parameters, which suggest caution in translating information obtained for single type of cells to the organism as a whole

    Specific antibody fragment ligand traps blocking FGF1 activity

    Get PDF
    Fibroblast growth factor 1 (FGF1) and its receptors (FGFRs) regulate crucial biological processes such as cell proliferation and differentiation. Aberrant activation of FGFRs by their ligands can promote tumor growth and angiogenesis in many tumor types, including lung or breast cancer. The development of FGF1-targeting molecules with potential implications for the therapy of FGF1-driven tumors is recently being considered a promising approach in the treatment of cancer. In this study we have used phage display selection to find scFv antibody fragments selectively binding FGF1 and preventing it from binding to its receptor. Three identified scFv clones were expressed and characterized with regard to their binding to FGF1 and ability to interfere with FGF1-induced signaling cascades activation. In the next step the scFvs were cloned to scFv-Fc format, as dimeric Fc fusions prove beneficial in prospective therapeutic application. As expected, scFvs-Fc exhibited significantly increased affinity towards FGF1. We observed strong antiproliferative activity of the scFvs and scFvs-Fc in the in vitro cell models. Presented antibody fragments serve as novel FGF1 inhibitors and can be further utilized as powerful tools to use in the studies on the selective cancer therapy

    Quantitative methods to monitor RNA biomarkers in myotonic dystrophy

    Get PDF
    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are human neuromuscular disorders associated with mutations of simple repetitive sequences in afected genes. The abnormal expansion of CTG repeats in the 3?-UTR of the DMPK gene elicits DM1, whereas elongated CCTG repeats in intron 1 of ZNF9/CNBP triggers DM2. Pathogenesis of both disorders is manifested by nuclear retention of expanded repeat containing RNAs and aberrant alternative splicing. The precise determination of absolute numbers of mutant RNA molecules is important for a better understanding of disease complexity and for accurate evaluation of the efficacy of therapeutic drugs. We present two quantitative methods, Multiplex Ligation-Dependent Probe Amplifcation and droplet digital PCR, for studying the mutant DMPK transcript (DMPKexpRNA) and the aberrant alternative splicing in DM1 and DM2 human tissues and cells. We demonstrate that in DM1, the DMPKexpRNA is detected in higher copy number than its normal counterpart. Moreover, the absolute number of the mutant transcript indicates its low abundance with only a few copies per cell in DM1 fibroblasts. Most importantly, in conjunction with fuorescence in-situ hybridization experiments, our results suggest that in DM1 fibroblasts, the vast majority of nuclear RNA foci consist of a few molecules of DMPKexpRNA

    Human Hsp70 Disaggregase reverses Parkinson’s-linked α-Synuclein Amyloid Fibrils

    Get PDF
    Intracellular amyloid fibrils linked to neurodegenerative disease typically accumulate in an age-related manner, suggesting inherent cellular capacity for counteracting amyloid formation in early life. Metazoan molecular chaperones assist native folding and block polymerization of amyloidogenic proteins, preempting amyloid fibril formation. Chaperone capacity for amyloid disassembly, however, is unclear. Here, we show that a specific combination of human Hsp70 disaggregase-associated chaperone components efficiently disassembles α-synuclein amyloid fibrils characteristic of Parkinson’s disease in vitro. Specifically, the Hsc70 chaperone, the class B J-protein DNAJB1, and an Hsp110 family nucleotide exchange factor (NEF) provide ATP-dependent activity that disassembles amyloids within minutes via combined fibril fragmentation and depolymerization. This ultimately generates non-toxic α-synuclein monomers. Concerted, rapid interaction cycles of all three chaperone components with fibrils generate the power stroke required for disassembly. This identifies a powerful human Hsp70 disaggregase activity that efficiently disassembles amyloid fibrils and points to crucial yet undefined biology underlying amyloid-based diseases

    Systemic changes in cell size throughout the body of Drosophila melanogaster associated with mutations in molecular cell cycle regulators

    Get PDF
    Abstract Along with different life strategies, organisms have evolved dramatic cellular composition differences. Understanding the molecular basis and fitness effects of these differences is key to elucidating the fundamental characteristics of life. TOR/insulin pathways are key regulators of cell size, but whether their activity determines cell size in a systemic or tissue-specific manner awaits exploration. To that end, we measured cells in four tissues in genetically modified Drosophila melanogaster (rictor Δ2 and Mnt 1 ) and corresponding controls. While rictor Δ2 flies lacked the Rictor protein in TOR complex 2, downregulating the functions of this element in TOR/insulin pathways, Mnt 1 flies lacked the transcriptional regulator protein Mnt, weakening the suppression of downstream signalling from TOR/insulin pathways. rictor Δ2 flies had smaller epidermal (leg and wing) and ommatidial cells and Mnt 1 flies had larger cells in these tissues than the controls. Females had consistently larger cells than males in the three tissue types. In contrast, dorsal longitudinal flight muscle cells (measured only in males) were not altered by mutations. We suggest that mutations in cell cycle control pathways drive the evolution of systemic changes in cell size throughout the body, but additional mechanisms shape the cellular composition of some tissues independent of these mutations

    FGF2 Dual Warhead Conjugate with Monomethyl Auristatin E and α-Amanitin Displays a Cytotoxic Effect towards Cancer Cells Overproducing FGF Receptor 1

    No full text
    In the rapidly developing field of targeted cancer therapy there is growing interest towards therapeutics combining two or more compounds to achieve synergistic action and minimize the chance of cancer resistance to treatment. We developed a fibroblast growth factor 2 (FGF2)-conjugate bearing two cytotoxic drugs with independent mode of action: α-amanitin and monomethyl auristatin E. Drugs are covalently attached to the targeting protein in a site-specific manner via maleimide-thiol conjugation and Cu(I)-catalyzed alkyne-azide cycloaddition. The dual warhead conjugate binds to FGF receptor 1 (FGFR1) and utilizes receptor-mediated endocytosis for selective internalization into cancer cells with FGFR1. The developed conjugate displays high cytotoxicity towards all tested FGFR1-positive cell lines. Most importantly, the improved cytotoxic effect of both drugs is observed for lung cancer cell line NCI-H446. The single drug-FGF2 conjugates have no impact on the viability of NCI-H446 cells, whereas the dual warhead-FGF2 conjugate selectively and efficiently kills these FGFR1 positive cancer cells. Due to the diversified mode of action the dual warhead-FGF2 conjugate may overcome the potential acquired resistance of FGFR1-overproducing cancer cells towards single cytotoxic drugs
    corecore