17 research outputs found

    Coupling of transcription and replication machineries in the λ DNA replication initiation: evidence for direct interaction of Escherichia coli RNA polymerase and the lambda O protein

    Get PDF
    Transcription proceeding downstream of the lambda phage replication origin was previously shown to support initial steps of the lambda primosome assembly in vitro and to regulate frequency and directionality of lambda DNA replication in vivo. In this report, the data are presented indicating that the RNA polymerase beta subunit makes a direct contact with the lambdaO protein, a replication initiator of lambda phage. These results suggest that the role of RNA polymerase during the initiation of lambda phage DNA replication may be more complex than solely influencing DNA topology. Results demonstrated in this study also show that gyrase supercoiling activity stimulates the formation of a complex between lambdaO and RNA polymerase, suggesting that the introduction of negative supercoils by DNA gyrase, besides lowering the energy required for DNA strand separation, may play an additional role in modeling protein–protein interactions at early steps of DNA replication initiation

    The C-terminal domain of the Escherichia coli RNA polymerase α subunit plays a role in the CI-dependent activation of the bacteriophage λ pM promoter

    Get PDF
    The bacteriophage λ pM promoter is required for maintenance of the λ prophage in Escherichia coli, as it facilitates transcription of the cI gene, encoding the λ repressor (CI). CI levels are maintained through a transcriptional feedback mechanism whereby CI can serve as an activator or a repressor of pM. CI activates pM through cooperative binding to the OR1 and OR2 sites within the OR operator, with the OR2-bound CI dimer making contact with domain 4 of the RNA polymerase σ subunit (σ4). Here we demonstrate that the 261 and 287 determinants of the C-terminal domain of the RNA polymerase α subunit (αCTD), as well as the DNA-binding determinant, are important for CI-dependent activation of pM. We also show that the location of αCTD at the pM promoter changes in the presence of CI. Thus, in the absence of CI, one αCTD is located on the DNA at position −44 relative to the transcription start site, whereas in the presence of CI, αCTD is located at position −54, between the CI-binding sites at OR1 and OR2. These results suggest that contacts between CI and both αCTD and σ are required for efficient CI-dependent activation of pM

    Coupling of transcription and replication machineries in λ DNA replication initiation: evidence for direct interaction of Escherichia coli RNA polymerase and the λO protein

    Get PDF
    Transcription proceeding downstream of the λ phage replication origin was previously shown to support initial steps of the λ primosome assembly in vitro and to regulate frequency and directionality of λ DNA replication in vivo. In this report, the data are presented indicating that the RNA polymerase β subunit makes a direct contact with the λO protein, a replication initiator of λ phage. These results suggest that the role of RNA polymerase during the initiation of λ phage DNA replication may be more complex than solely influencing DNA topology. Results demonstrated in this study also show that gyrase supercoiling activity stimulates the formation of a complex between λO and RNA polymerase, suggesting that the introduction of negative supercoils by DNA gyrase, besides lowering the energy required for DNA strand separation, may play an additional role in modeling protein–protein interactions at early steps of DNA replication initiation

    Influence of the Escherichia coli oxyR gene function on λ prophage maintenance

    Get PDF
    In Escherichia coli hosts, hydrogen peroxide is one of the factors that may cause induction of λ prophage. Here, we demonstrate that H2O2-mediated λ prophage induction is significantly enhanced in the oxyR mutant host. The mRNA levels for cI gene expression were increased in a λ lysogen in the presence of H2O2. On the other hand, stimulation of the pM promoter by cI857 overproduced from a multicopy plasmid was decreased in the ΔoxyR mutant in the presence of H2O2 but not under normal growth conditions. The purified OxyR protein did bind specifically to the pM promoter region. This binding impaired efficiency of interaction of the cI protein with the OR3 site, while stimulating such a binding to OR2 and OR1 sites, in the regulatory region of the pM promoter. We propose that changes in cI gene expression, perhaps in combination with moderately induced SOS response, may be responsible for enhanced λ prophage induction by hydrogen peroxide in the oxyR mutant. Therefore, OxyR seems to be a factor stimulating λ prophage maintenance under conditions of oxidative stress. This proposal is discussed in the light of efficiency of induction of lambdoid prophages bearing genes coding for Shiga toxins

    A dual promoter system regulating λ DNA replication initiation

    Get PDF
    Transcription and DNA replication are tightly regulated to ensure coordination of gene expression with growth conditions and faithful transmission of genetic material to progeny. A large body of evidence has accumulated, indicating that encounters between protein machineries carrying out DNA and RNA synthesis occur in vivo and may have important regulatory consequences. This feature may be exacerbated in the case of compact genomes, like the one of bacteriophage λ, used in our study. Transcription that starts at the rightward pR promoter and proceeds through the λ origin of replication and downstream of it was proven to stimulate the initiation of λ DNA replication. Here, we demonstrate that the activity of a convergently oriented pO promoter decreases the efficiency of transcription starting from pR. Our results show, however, that a lack of the functional pO promoter negatively influences λ phage and λ-derived plasmid replication. We present data, suggesting that this effect is evoked by the enhanced level of the pR-driven transcription, occurring in the presence of the defective pO, which may result in the impeded formation of the replication initiation complex. Our data suggest that the cross talk between the two promoters regulates λ DNA replication and coordinates transcription and replication processes

    Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex

    Get PDF
    The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical 'wings' of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain

    DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding

    Get PDF
    The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3' protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3'-5' polarity and, thereby acts as a molecular 'wedge' to initiate DNA strand displacement

    The C-terminal domain of the Escherichia

    No full text
    coli RNA polymerase a subunit plays a role in the CI-dependent activation of the bacteriophage j pM promote

    Cdc45-induced loading of human RPA onto single-stranded DNA

    No full text
    Abstract Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8–10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork
    corecore