26 research outputs found

    Modeling glioblastoma heterogeneity as a dynamic network of cell states

    Get PDF
    Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3\ua0weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition

    Прикладна механіка і основи конструювання: навчально-методичний посібник

    Get PDF
    Розроблено відповідно до навчальної програми і призначено для виконання розрахунково-графічної роботи з дисципліни «Прикладна механіка і основи конструювання» студентам напряму підготовки 6.050202 «Автоматизація та компютерно-ігрегровані технології» денної та заочної форм навчання. Посібник рекомендовано також для самостійної роботи студентів, оскільки він вміщує короткі теоретичні викладки основного матеріалу дисципліни «Прикладна механіка і основи конструювання», умови завдань, приклади їх розв’язування, необхідні довідкові дані

    Fiber Mediated Receptor Masking in Non-Infected Bystander Cells Restricts Adenovirus Cell Killing Effect but Promotes Adenovirus Host Co-Existence

    Get PDF
    The basic concept of conditionally replicating adenoviruses (CRAD) as oncolytic agents is that progenies generated from each round of infection will disperse, infect and kill new cancer cells. However, CRAD has only inhibited, but not eradicated tumor growth in xenograft tumor therapy, and CRAD therapy has had only marginal clinical benefit to cancer patients. Here, we found that CRAD propagation and cancer cell survival co-existed for long periods of time when infection was initiated at low multiplicity of infection (MOI), and cancer cell killing was inefficient and slow compared to the assumed cell killing effect upon infection at high MOI. Excessive production of fiber molecules from initial CRAD infection of only 1 to 2% cancer cells and their release prior to the viral particle itself caused a tropism-specific receptor masking in both infected and non-infected bystander cells. Consequently, the non-infected bystander cells were inefficiently bound and infected by CRAD progenies. Further, fiber overproduction with concomitant restriction of adenovirus spread was observed in xenograft cancer therapy models. Besides the CAR-binding Ad4, Ad5, and Ad37, infection with CD46-binding Ad35 and Ad11 also caused receptor masking. Fiber overproduction and its resulting receptor masking thus play a key role in limiting CRAD functionality, but potentially promote adenovirus and host cell co-existence. These findings also give important clues for understanding mechanisms underlying the natural infection course of various adenoviruses

    Adenovirus species B: receptors, tropism and hematopoietic cells

    No full text
    At present, the human adenoviruses (Ads) comprise 51 members, which have been classified into six species (A to F). In general, adenovirus (Ad) tissue tropism or disease patterns vary according to species, although adenoviruses from different species can sometimes cause the same symptoms. The current interest in adenoviruses is partly due to the aim of using them as vectors for gene therapy. Hematopoietic cells are attractive targets for gene therapy and the transductions can be performed ex vivo. However, the most commonly used adenovirus vectors, based on Ad2 or Ad5, are inefficient in their transduction of hematopoietic cells since they attach poorly to these cells. Most Ads, including Ad2 and Ad5, appear to use the coxsackie-adenovirus receptor (CAR) (a component of tight junctions), for attachment to host cells. However, species B Ads do not bind to CAR and several studies have indicated that species B-based vectors would be more suitable for hematopoietic cells. Species B Ads can be further divided into species B1 and B2, which display different tissue tropisms. Species B1 Ads mostly cause acute respiratory infections whereas species B2 Ads have been associated with persistent infections of the kidney and urinary tract. One of the key determinants of tropism is believed to be the initial high-affinity attachment of the virion to host cell fiber receptors. By reciprocal blocking experiments and different ways of characterizing the species B attachment receptors, we have shown that the species B2 serotypes Ad11p and Ad35 and the species B1 serotypes Ad3p and Ad7p also differ in receptor usage. There are at least two different Ad species B receptors. Since one of these receptors appeared to be used by all four serotypes, we designated this receptor sBAR (species B adenovirus receptor). The other receptor appeared to be used exclusively by the two species B2 serotypes and was therefore designated sB2AR (species B2 adenovirus receptor). Binding to sBAR can be abolished by EDTA and restored with Mn2+ or Ca2+, whereas binding (of Ad11p and Ad35) to sB2AR is independent of divalent cations. Furthermore, sBAR appears to be trypsin sensitive whereas sB2AR is not. We also identified CD46 as a receptor for Ad11p. Even so, CD46 does not appear to be a functional receptor for Ad7p. Both Ad7p and Ad11p attached to CD46-transfected Chinese hamster ovary (CHO) cells more efficiently than to control CHO cells. However, only Ad11p (selectively) infected CD46-transfected CHO cells. Anti-CD46 antibodies inhibited Ad7p and Ad11p from binding to, and Ad11p from infecting, CD46-transfected CHO cells. However, in human cells, anti-CD46 antibodies had an inhibitory effect only on Ad11p binding (~30%) but did not affect Ad7p binding. In binding experiments with EDTA, divalent cations and pretrypsinized cells, Ad11p and Ad7p showed the same pattern in their binding to CHO-CD46 cells as in the previous study. Since Ad7p interacted almost as efficiently with control CHO cells as with CHO-CD46 cells after addition of Mn2+, it seems that Ad7p mainly addressed an endogenously expressed hamster receptor on CHO-CD46, the properties of which resemble sBAR. In addition, Ad3p and Ad7p attach poorly to PBMCs and CD46 is expressed on all nucleated cells. Thus, CD46 appears to correspond to sB2AR rather than to sBAR. With these differences in receptor usage in mind, we studied the binding and infectious capacity of these species B Ads in various hematopoietic cells. We found that all species B serotypes bound efficiently to CD34+ hematopoietic stem cells (HSCs) and also productively infected HSCs. However, only the sB2AR binding Ad serotypes Ad11p and Ad35 could attach primary PBMCs efficiently. Our results regarding the subsequent steps in infection of PBMCs suggest that both Ad11p and Ad35 enter PBMCs and deliver viral DNA to the nuclei of most PBMC cell types. However, productive infections were only clearly detected in stimulated T-cells (most frequently) and monocytes, whereas Ad infection seemed eclipsed in unstimulated lymphocytes. Replication of Ad DNA seemed seriously impaired in at least T-cells, indicating limited production of infectious particles in PBMCs. The capacity of species C Ads to establish persistent infections in lymphatic tissues has been described previously. These Ads also persistently infect various transformed hematopoietic cell lines in vitro. Our studies indicate that replication of the species B2 Ads is also restricted in cells of hematopoietic origin (both in primary and transformed cells). Taken together, the results indicate that species B2 Ads (as compared to other Ads) seem to enter and infect most hematopoietic cells efficiently, which is in line with the persistent nature of these Ads. They would presumably act as suitable vectors for efficient transduction of most cells of hematopoietic origin, as has already been shown for e.g. HSCs and dendritic cells. The finding that replication of Ads in T-cells appears to depend on the level of T-cell activation, strengthens the hypothesis that T-cells may serve as a reservoir for human Ads and raises possible safety issues for usage of species B-based vectors in hematopoietic cells

    There Are Two Different Species B Adenovirus Receptors: sBAR, Common to Species B1 and B2 Adenoviruses, and sB2AR, Exclusively Used by Species B2 Adenoviruses

    No full text
    Unlike most adenovirus (Ad) serotypes, the species B Ads do not use the coxsackie-adenovirus receptor as an attachment receptor. The species B attachment receptor(s) has not yet been identified and is also poorly characterized. Species B Ads can be further divided into species B1 and B2 Ads, and these display different organ tropisms, suggesting a difference in receptor usage. We have studied the receptor interactions of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 and characterized the properties of the species B receptor(s). Reciprocal blocking experiments using unlabeled Ad11p or Ad3p virions to block the binding to A549 cells of (35)S-labeled 3p, 7p, 11p, and 35 showed that only Ad11p virions efficiently blocked the binding of all the species B Ads studied (≥70%). Thus, there is apparently a common species B Ad receptor (sBAR). However, Ad3p virions only partially (≤30%) blocked the binding of Ad11p and Ad35 to A549 cells. Binding experiments after trypsin treatment of the cells confirmed that the species B2 serotypes address at least two different receptors on A549 and J82 cells, since sBAR is trypsin sensitive but the species B2 Ad receptor (sB2AR) is not. Both receptors are proteins or glycoproteins, since binding of all species B serotypes was abolished after proteinase K or subtilisin treatment of A549 or J82 cells. Furthermore, binding of the species B serotypes to sBAR was abolished with EDTA and restored with Ca(2+), whereas the binding of Ad11p and Ad35 to SB2AR was independent of divalent cations

    COMBImage : a modular parallel processing framework for pairwise drug combination analysis that quantifies temporal changes in label-free video microscopy movies

    No full text
    Background: Large-scale pairwise drug combination analysis has lately gained momentum in drug discovery and development projects, mainly due to the employment of advanced experimental-computational pipelines. This is fortunate as drug combinations are often required for successful treatment of complex diseases. Furthermore, most new drugs cannot totally replace the current standard-of-care medication, but rather have to enter clinical use as add-on treatment. However, there is a clear deficiency of computational tools for label-free and temporal image-based drug combination analysis that go beyond the conventional but relatively uninformative end point measurements. Results: COMBImage is a fast, modular and instrument independent computational framework for in vitro pairwise drug combination analysis that quantifies temporal changes in label-free video microscopy movies. Jointly with automated analyses of temporal changes in cell morphology and confluence, it performs and displays conventional cell viability and synergy end point analyses. The image processing algorithms are parallelized using Google's MapReduce programming model and optimized with respect to method-specific tuning parameters. COMBImage is shown to process time-lapse microscopy movies from 384-well plates within minutes on a single quad core personal computer.This framework was employed in the context of an ongoing drug discovery and development project focused on glioblastoma multiforme; the most deadly form of brain cancer. Interesting add-on effects of two investigational cytotoxic compounds when combined with vorinostat were revealed on recently established clonal cultures of glioma-initiating cells from patient tumor samples. Therapeutic synergies, when normal astrocytes were used as a toxicity cell model, reinforced the pharmacological interest regarding their potential clinical use. Conclusions: COMBImage enables, for the first time, fast and optimized pairwise drug combination analyses of temporal changes in label-free video microscopy movies. Providing this jointly with conventional cell viability based end point analyses, it could help accelerating and guiding any drug discovery and development project, without use of cell labeling and the need to employ a particular live cell imaging instrument

    COMBImage2 : a parallel computational framework for higher-order drug combination analysis that includes automated plate design, matched filter based object counting and temporal data mining

    No full text
    Background: Pharmacological treatment of complex diseases using more than two drugs is commonplace in the clinic due to better efficacy, decreased toxicity and reduced risk for developing resistance. However, many of these higher-order treatments have not undergone any detailed preceding in vitro evaluation that could support their therapeutic potential and reveal disease related insights. Despite the increased medical need for discovery and development of higher-order drug combinations, very few reports from systematic large-scale studies along this direction exist. A major reason is lack of computational tools that enable automated design and analysis of exhaustive drug combination experiments, where all possible subsets among a panel of pre-selected drugs have to be evaluated. Results: Motivated by this, we developed COMBImage2, a parallel computational framework for higher-order drug combination analysis. COMBImage2 goes far beyond its predecessor COMBImage in many different ways. In particular, it offers automated 384-well plate design, as well as quality control that involves resampling statistics and inter-plate analyses. Moreover, it is equipped with a generic matched filter based object counting method that is currently designed for apoptotic-like cells. Furthermore, apart from higher-order synergy analyses, COMBImage2 introduces a novel data mining approach for identifying interesting temporal response patterns and disentangling higher- from lower- and single-drug effects.COMBImage2 was employed in the context of a small pilot study focused on the CUSP9v4 protocol, which is currently used in the clinic for treatment of recurrent glioblastoma. For the first time, all 246 possible combinations of order 4 or lower of the 9 single drugs consisting the CUSP9v4 cocktail, were evaluated on an in vitro clonal culture of glioma initiating cells. Conclusions: COMBImage2 is able to automatically design and robustly analyze exhaustive and in general higher-order drug combination experiments. Such a versatile video microscopy oriented framework is likely to enable, guide and accelerate systematic large-scale drug combination studies not only for cancer but also other diseases
    corecore