10 research outputs found

    TIMP-3 facilitates binding of target metalloproteinases to the endocytic receptor LRP-1 and promotes scavenging of MMP-1

    Get PDF
    Matrix metalloproteinases (MMPs) and the related families of disintegrin metalloproteinases (ADAMs) and ADAMs with thrombospondin repeats (ADAMTSs) play a crucial role in extracellular matrix (ECM) turnover and shedding of cell-surface molecules. The proteolytic activity of metalloproteinases is post-translationally regulated by their endogenous inhibitors, known as tissue inhibitors of metalloproteinases (TIMPs). Several MMPs, ADAMTSs and TIMPs have been reported to be endocytosed by the low-density lipoprotein receptor-related protein-1 (LRP-1). Different binding affinities of these proteins for the endocytic receptor correlate with different turnover rates which, together with differences in their mRNA expression, determines their nett extracellular levels. In this study, we used surface plasmon resonance to evaluate the affinity between LRP-1 and a number of MMPs, ADAMs, ADAMTSs, TIMPs and metalloproteinase/TIMP complexes. This identified MMP-1 as a new LRP-1 ligand. Among the proteins analyzed, TIMP-3 bound to LRP-1 with highest affinity (KD = 1.68 nM). Additionally, we found that TIMP-3 can facilitate the clearance of its target metalloproteinases by bridging their binding to LRP-1. For example, the free form of MMP-1 was found to have a KD of 34.6 nM for LRP-1, while the MMP-1/TIMP-3 complex had a sevenfold higher affinity (KD = 4.96 nM) for the receptor. TIMP-3 similarly bridged binding of MMP-13 and MMP-14 to LRP-1. TIMP-1 and TIMP-2 were also found to increase the affinity of target metalloproteinases for LRP-1, albeit to a lesser extent. This suggests that LRP-1 scavenging of TIMP/metalloproteinase complexes may be a general mechanism by which inhibited metalloproteinases are removed from the extracellular environment

    The ISWI Chromatin Remodeler Organizes the hsrω ncRNA–Containing Omega Speckle Nuclear Compartments

    Get PDF
    The complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA) essential, among other functions, for the assembly and organization of the omega speckles. The nucleoplasmic omega speckles play important functions in RNA metabolism, in normal and stressed cells, by regulating availability of hnRNPs and some other RNA processing proteins. Chromatin remodelers, as well as nuclear speckles and their associated ncRNAs, are emerging as important components of gene regulatory networks, although their functional connections have remained poorly defined. Here we provide multiple lines of evidence showing that the hsrω ncRNA interacts in vivo and in vitro with ISWI, regulating its ATPase activity. Remarkably, we found that the organization of nucleoplasmic omega speckles depends on ISWI function. Our findings highlight a novel role for chromatin remodelers in organization of nucleoplasmic compartments, providing the first example of interaction between an ATP-dependent chromatin remodeler and a large ncRNA

    DAR 16-II Primes Endothelial Cells for Angiogenesis Improving Bone Ingrowth in 3D-Printed BCP Scaffolds and Regeneration of Critically Sized Bone Defects

    No full text
    Bone is a highly vascularized tissue and relies on the angiogenesis and response of cells in the immediate environmental niche at the defect site for regeneration. Hence, the ability to control angiogenesis and cellular responses during osteogenesis has important implications in tissueengineered strategies. Self-assembling ionic-complementary peptides have received much interest as they mimic the natural extracellular matrix. Three-dimensional (3D)-printed biphasic calcium phosphate (BCP) scaffolds coated with self-assembling DAR 16-II peptide provide a support template with the ability to recruit and enhance the adhesion of cells. In vitro studies demonstrated prompt the adhesion of both human umbilical vein endothelial cells (HUVEC) and human mesenchymal stem cells (hMSC), favoring endothelial cell activation toward an angiogenic phenotype. The SEM-EDS and protein micro bicinchoninic acid (BCA) assays demonstrated the efficacy of the coating. Whole proteomic analysis of DAR 16-II-treated HUVECs demonstrated the upregulation of proteins involved in cell adhesion (HABP2), migration (AMOTL1), cytoskeletal re-arrangement (SHC1, TMOD2), immuno-modulation (AMBP, MIF), and morphogenesis (COL4A1). In vivo studies using DAR-16-II-coated scaffolds provided an architectural template, promoting cell colonization, osteogenesis, and angiogenesis. In conclusion, DAR 16-II acts as a proactive angiogenic factor when adsorbed onto BCP scaffolds and provides a simple and effective functionalization step to facilitate the translation of tailored 3D-printed BCP scaffolds for clinical applications

    Cancer and the microbiome : potential applications as new tumor biomarker

    Get PDF
    Microbial communities that colonize in humans are collectively described as microbiome. According to conservative estimates, about 15% of all types of neoplasms are related to different infective agents. However, current knowledge is not sufficient to explain how the microbiome contributes to the growth and development of cancers. Large and thorough studies involving colonized, diverse and complex microbiome entities are required to identify microbiome as a potential cancer marker and to understand how the immune system is involved in response to pathogens. This article reviews the existing evidence supporting the enigmatic association of transformed microbiome with the development of cancer through the immunological modification. Ascertaining the connection between microbiome and immunological responses with risk of cancer may direct to explaining significant advances in the etiology of cancer, potentially disclosing a novel paradigm of research for the management and prevention of cancer

    Cancer and the microbiome: potential applications as new tumor biomarker

    No full text
    corecore