91 research outputs found

    Synthesis, biological activity, pharmacokinetic properties and molecular modelling studies of novel 1H,3H-oxazolo[3,4-a]benzimidazoles: non-nucleoside HIV-1 reverse transcriptase inhibitors

    Get PDF
    New 1H,3H-oxazolo[3,4-a]benzimidazoles (OBZs) were synthesized as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) to extend the structure-activity relationships observed for an early series of related 1H,3H-thiazolo[3,4-a]benzimidazole derivatives (TBZs). The new compounds showed inhibitory activity against the replication of various HIV-1 strains, including NNRTI-resistant strains. Testing of a representative OBZ derivative in an HPLC assay on biological fluids, indicated that the sulphur substitution appreciably improved the metabolic stability of the TBZ compound. In addition, molecular modelling studies demonstrated that OBZs, TBZs and other NNRTIs have similar structural properties, that is a butterfly-like conformation, which is a key structural requirement for reverse transcriptase inhibition

    Minor mutations in HIV protease at baseline and appearance of primary mutation 90M in patients for whom their first protease-inhibitor ntiretroviral regimens failed

    Get PDF
    The association between minor mutations in human immunodeficiency virus (HIV) protease at baseline and development of common primary mutation 90M at virological failure (conferring some resistance to all protease inhibitors [PIs]) was evaluated in 93 previously drug-naive patients experiencing failure of their first PI-based antiretroviral regimens. In logistic regression analysis, the probability of accumulating a new 90M mutation at virological failure was associated with the presence at baseline of minor mutation 36I (naturally occurring in ∼25% of HIV clade B and in >80% of HIV non-clade-B viruses) (adjusted odds ratio, 13.5 [95% confidence interval, 1.89–95.6]; P=.009) and, possibly, of 10I/V. This suggests a potential role for the presence of 36I at baseline in predicting the appearance of 90M at virological failure

    3-[2-(1H-1,3-Benzodiazol-2-yl)eth­yl]-1,3-oxazolidin-2-one

    Get PDF
    In the title compound, C12H13N3O2, the dihedral angle between the oxazolone ring and the benzimidazole unit is 45.0 (5)°, exhibiting a staggered conformation at the Cα—Cβ bond. In the crystal, a strong N—H⋯N hydrogen bond links the mol­ecules into a C(4) chain along the c axis while a C—H⋯O hydrogen-bonding inter­action generates a C(5) chain along the a axis, i.e. perpendicular to the other chain

    Low-frequency drug-resistant HIV-1 and risk of virological failure to first-line NNRTI-based ART: a multicohort European case-control study using centralized ultrasensitive 454 pyrosequencing

    Get PDF
    Objectives It is still debated if pre-existing minority drug-resistant HIV-1 variants (MVs) affect the virological outcomes of first-line NNRTI-containing ART. Methods This Europe-wide case-control study included ART-naive subjects infected with drug-susceptible HIV-1 as revealed by population sequencing, who achieved virological suppression on first-line ART including one NNRTI. Cases experienced virological failure and controls were subjects from the same cohort whose viraemia remained suppressed at a matched time since initiation of ART. Blinded, centralized 454 pyrosequencing with parallel bioinformatic analysis in two laboratories was used to identify MVs in the 1%-25% frequency range. ORs of virological failure according to MV detection were estimated by logistic regression. Results Two hundred and sixty samples (76 cases and 184 controls), mostly subtype B (73.5%), were used for the analysis. Identical MVs were detected in the two laboratories. 31.6% of cases and 16.8% of controls harboured pre-existing MVs. Detection of at least one MV versus no MVs was associated with an increased risk of virological failure (OR = 2.75, 95% CI = 1.35-5.60, P = 0.005); similar associations were observed for at least one MV versus no NRTI MVs (OR = 2.27, 95% CI = 0.76-6.77, P = 0.140) and at least one MV versus no NNRTI MVs (OR = 2.41, 95% CI = 1.12-5.18, P = 0.024). A dose-effect relationship between virological failure and mutational load was found. Conclusions Pre-existing MVs more than double the risk of virological failure to first-line NNRTI-based AR

    Evaluation of virological response and resistance profile in HIV-1 infected patients starting a first-line integrase inhibitor-based regimen in clinical settings

    Get PDF
    Background: Virological response and resistance profile were evaluated in drug-naïve patients starting their first-line integrase inhibitors (INIs)-based regimen in a clinical setting. Study design: Virological success (VS) and virological rebound (VR) after therapy start were assessed by survival analyses. Drug-resistance was evaluated at baseline and at virological failure. Results: Among 798 patients analysed, 38.6 %, 27.1 % and 34.3 % received raltegravir, elvitegravir and dolutegravir, respectively. Baseline resistance to NRTIs, NNRTIs, PIs and INIs was: 3.9 %, 13.9 %, 1.6 % and 0.5 %, respectively. Overall, by 12 months of treatment, the probability of VS was 95 %, while the probability of VR by 36 months after VS was 13.1 %. No significant differences in the virological response were found according to the INI used. The higher pre-therapy viremia strata was (<100,000 vs. 100,000-500,000 vs. > 500,000 copies/mL), lower was the probability of VS (96.0 % vs. 95.2 % vs. 91.1 %, respectively, P < 0.001), and higher the probability of VR (10.2 % vs. 15.8 % vs. 16.6 %, respectively, P = 0.010). CD4 cell count <200 cell/mm3 was associated with the lowest probability of VS (91.5 %, P < 0.001) and the highest probability of VR (20.7 %, P = 0.008) compared to higher CD4 levels. Multivariable Cox-regression confirmed the negative role of high pre-therapy viremia and low CD4 cell count on VS, but not on VR. Forty-three (5.3 %) patients experienced VF (raltegravir: 30; elvitegravir: 9; dolutegravir: 4). Patients failing dolutegravir did not harbor any resistance mutation either in integrase or reverse transcriptase. Conclusions: Our findings confirm that patients receiving an INI-based first-line regimen achieve and maintain very high rates of VS in clinical practice

    Increased Bone Marrow Interleukin-7 (IL-7)/IL-7R Levels but Reduced IL-7 Responsiveness in HIV-Positive Patients Lacking CD4+ Gain on Antiviral Therapy

    Get PDF
    Background: The bone marrow (BM) cytokine milieu might substantially affect T-lymphocyte homeostasis in HIV-positive individuals. Interleukin-7 (IL-7) is a bone marrow-derived cytokine regulating T-cell homeostasis through a CD4+-driven feedback loop. CD4+ T-lymphopenia is associated with increased free IL-7 levels and reduced IL-7R expression/function, which are only partially reverted by highly active antiretroviral therapy (HAART). We investigated the BM production, peripheral expression and signaling (pStat5+ and Bcl-2+ CD4+/CD8+ T cells) of IL-7/IL-7Ra in 30 HAART-treated HIV-positive patients who did not experience CD4+ recovery (CD4+ #200/ml) and who had different levels of HIV viremia; these patients included 18 immunological nonresponders (INRs; HIV-RNA#50), 12 complete failures (CFs; HIV-RNA.1000), and 23 HIVseronegative subjects. Methods: We studied plasma IL-7 levels, IL-7Ra+CD4+/CD8+ T-cell proportions, IL-7Ra mRNA expression in PBMCs, spontaneous IL-7 production by BM mononuclear cells (BMMCs), and IL-7 mRNA/IL-7Ra mRNA in BMMC-derived stromal cells (SCs). We also studied T-cell responsiveness to IL-7 by measuring the proportions of pStat5+ and Bcl-2+ CD4+/CD8+ T cells. Results: Compared to HIV-seronegative controls, CFs and INRs presented elevated plasma IL-7 levels and lower IL-7Ra CD4+/CD8+ cell-surface expression and peripheral blood production, confirming the most relevant IL-7/IL-7R disruption. Interestingly, BM investigation revealed a trend of higher spontaneous IL-7 production in INRs (p = .09 vs. CFs) with a nonsignificant trend toward higher IL-7-Ra mRNA levels in BMMC-derived stromal cells. However, upon IL-7 stimulation, the proportion of pStat5+CD4+ T cells did not increase in INRs despite higher constitutive levels (p = .06); INRs also displayed lower Bcl-2+CD8+ T-cell proportions than controls (p = .04). Conclusions: Despite severe CD4+ T-lymphopenia and a disrupted IL-7/IL-7R profile in the periphery, INRs display elevated BM IL-7/IL-7Ra expression but impaired T-cell responsiveness to IL-7, suggesting the activity of a central compensatory pathway targeted to replenish the CD4+ compartment, which is nevertheless inappropriate to compensate the dysfunctional signaling through IL-7 receptor

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage

    Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes

    Get PDF
    Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor
    • …
    corecore