2,453 research outputs found

    Long-Period Building Response to Earthquakes in the San Francisco Bay Area

    Get PDF
    This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the San Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 San Francisco earthquake, and two hypothetical magnitude 7.8 northern San Andreas fault earthquakes with hypocenters north and south of San Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of San Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near San Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the San Francisco Bay Area

    Statistical Features of Short-Period and Long-Period Near-Source Ground Motions

    Get PDF
    This study collects recorded ground motions from the near-source region of large earthquakes and considers to what extent this historic record can inform expectations of future ground motions at similar sites. The distribution of observed peak ground acceleration (PGA) is well approximated by the lognormal distribution, and we expect the observed distribution to remain unchanged with the addition of data from future earthquakes. However, the distribution of peak ground displacements (PGD) will likely change after a well-recorded large earthquake. Specifically we expect future observations of PGD greater than those previously recorded. We use seismic scaling relations to motivate the expected distribution of PGD as uniform on the logarithmic scale, or at least fat-tailed. Because PGA does not scale with fault rupture area or slip on the fault, there are no such scaling relations to predict the observed distribution of PGA. The observed records show that there is essentially no correlation between PGD and PGA for near-source ground motions from large events. The large uncertainty in a future value of PGD in the near-source region of a large earthquake exists despite the ability of Earth scientists to accurately model long-period ground motions. In contrast, the relative certainty in a future value of PGA exists despite the inability to model short-period ground motions reliably. The stability of the observed distribution of PGA with respect to new ground-motion records enables us to predict the distribution of future PGA and to calculate the probability of exceeding the largest recorded PGA

    Reply to "Comment on ā€˜Statistical Features of Short-Period and Long-Period Near-Source Ground Motionsā€™ by Masumi Yamada, Anna H. Olsen, and Thomas H. Heaton" by Roberto Paolucci, Carlo Cauzzi, Ezio Faccioli, Marco Stupazzini, and Manuela Villani

    Get PDF
    The comment by Paolucci and colleagues (Paolucci et al., 2011) states that a probabilistic seismic hazard analysis (PSHA) can provide "reliable prediction of long-period spectral ordinates." The result of such an analysis would be in contrast to the more uncertain prediction suggested by our empirical, and proposed theoretical, distribution of near-source ground displacements in past, large magnitude earthquakes (Yamada et al., 2009). After addressing two specific concerns of Paolucci and colleagues, we use the balance of this reply to discuss the apparent differences between a PSHA and our observations. These two approaches to understanding the seismic hazard of long-period ground motions should be consistent even though they view the problem from different perspectives

    Characterizing Ground Motions That Collapse Steel Special Moment-Resisting Frames or Make Them Unrepairable

    Get PDF
    This work applies 64,765 simulated seismic ground motions to four models each of 6- or 20-story, steel special moment-resisting frame buildings. We consider two vector intensity measures and categorize the building response as ā€œcollapsed,ā€ ā€œunrepairable,ā€ or ā€œrepairable.ā€ We then propose regression models to predict the building responses from the intensity measures. The best models for ā€œcollapseā€ or ā€œunrepairableā€ use peak ground displacement and velocity as intensity measures, and the best models predicting peak interstory drift ratio, given that the frame model is ā€œrepairable,ā€ use spectral acceleration and epsilon (Ļµ) as intensity measures. The more flexible frame is always more likely than the stiffer frame to ā€œcollapseā€ or be ā€œunrepairable.ā€ A frame with fracture-prone welds is substantially more susceptible to ā€œcollapseā€ or ā€œunrepairableā€ damage than the equivalent frame with sound welds. The 20-story frames with fracture-prone welds are more vulnerable to P-delta instability and have a much higher probability of collapse than do any of the 6-story frames

    What we know about demand surge: Brief summary

    Get PDF
    Abstract: Demand surge is a process resulting in a higher cost to repair building damage after large disasters than to repair the same damage after a small disaster; this higher cost can be an additional 20% or more. It is of interest to insurers, regulators, property owners, and others. Despite its importance, demand surge has no standard definition or generally accepted predictive theory of its mechanisms and quantitative effects. By studying the circumstances of natural disasters that did and did not cause demand surge, common explanatory themes emerge from these historical events that may describe why and how much losses increase in some disasters. The themes are: total amount of repair work; timing of reconstruction; costs of materials, labor, and equipment; contractor overhead and profit; the general economic situation; insurance claims handling; and decisions of an insurance company. The development of these themes will aid in constructing a mechanistic, empirically supported approach to modeling demand surge

    Cavalier King Charles Spaniels with Chiari-like malformation and Syringomyelia have increased variability of spatio-temporal gait characteristics

    Get PDF
    Abstract Background Chiari-like malformation in the Cavalier King Charles Spaniel is a herniation of the cerebellum and brainstem into or through the foramen magnum. This condition predisposes to Syringomyelia; fluid filled syrinxes within the spinal cord. The resulting pathology in spinal cord and cerebellum create neuropathic pain and changes in gait. This study aims to quantify the changes in gait for Cavalier King Charles Spaniel with Chiari-like malformation and Syringomyelia. Methods We compared Cavalier King Charles Spaniel with Chiari-like malformation with (n = 9) and without (n = 8) Syringomyelia to Border Terriers (n = 8). Two video cameras and manual tracking was used to quantify gait parameters. Results and conclusions We found a significant increase in coefficient of variation for the spatio-temporal characteristics and ipsilateral distance between paws and a wider base of support in the thoracic limbs but not in the pelvic limbs for Cavalier King Charles Spaniels compared with the border terrier

    Long-term inpatient disease burden in the Adult Life after Childhood Cancer in Scandinavia (ALiCCS) study : A cohort study of 21,297 childhood cancer survivors

    Get PDF
    Background Survivors of childhood cancer are at increased risk for a wide range of late effects. However, no large population-based studies have included the whole range of somatic diagnoses including subgroup diagnoses and all main types of childhood cancers. Therefore, we aimed to provide the most detailed overview of the long-term risk of hospitalisation in survivors of childhood cancer. Methods and findings From the national cancer registers of Denmark, Finland, Iceland, and Sweden, we identified 21,297 5-year survivors of childhood cancer diagnosed with cancer before the age of 20 years in the periods 1943-2008 in Denmark, 1971-2008 in Finland, 1955-2008 in Iceland, and 1958-2008 in Sweden. We randomly selected 152,231 population comparison individuals matched by age, sex, year, and country (or municipality in Sweden) from the national population registers. Using a cohort design, study participants were followed in the national hospital registers in Denmark, 1977-2010; Finland, 1975-2012; Iceland, 1999-2008; and Sweden, 1968-2009. Disease-specific hospitalisation rates in survivors and comparison individuals were used to calculate survivors' standardised hospitalisation rate ratios (RRs), absolute excess risks (AERs), and standardised bed day ratios (SBDRs) based on length of stay in hospital. We adjusted for sex, age, and year by indirect standardisation. During 336,554 person-years of follow-up (mean: 16 years; range: 0-42 years), childhood cancer survivors experienced 21,325 first hospitalisations for diseases in one or more of 120 disease categories (cancer recurrence not included), when 10,999 were expected, yielding an overall RR of 1.94 (95% confidence interval [95% CI] 1.91-1.97). The AER was 3,068 (2,980-3,156) per 100,000 person-years, meaning that for each additional year of follow-up, an average of 3 of 100 survivors were hospitalised for a new excess disease beyond the background rates. Approximately 50% of the excess hospitalisations were for diseases of the nervous system (19.1% of all excess hospitalisations), endocrine system (11.1%), digestive organs (10.5%), and respiratory system (10.0%). Survivors of all types of childhood cancer were at increased, persistent risk for subsequent hospitalisation, the highest risks being those of survivors of neuroblastoma (RR: 2.6 [2.4-2.8]; n = 876), hepatic tumours (RR: 2.5 [2.0-3.1]; n = 92), central nervous system tumours (RR: 2.4 [2.3-2.5]; n = 6,175), and Hodgkin lymphoma (RR: 2.4 [2.3-2.5]; n = 2,027). Survivors spent on average five times as many days in hospital as comparison individuals (SBDR: 4.96 [4.94-4.98]; n = 422,218). The analyses of bed days in hospital included new primary cancers and recurrences. Of the total 422,218 days survivors spent in hospital, 47% (197,596 bed days) were for new primary cancers and recurrences. Our study is likely to underestimate the absolute overall disease burden experienced by survivors, as less severe late effects are missed if they are treated sufficiently in the outpatient setting or in the primary health care system. Conclusions Childhood cancer survivors were at increased long-term risk for diseases requiring inpatient treatment even decades after their initial cancer. Health care providers who do not work in the area of late effects, especially those in primary health care, should be aware of this highly challenged group of patients in order to avoid or postpone hospitalisations by prevention, early detection, and appropriate treatments.Peer reviewe

    Morbid Obesity as a Risk Factor for Hospitalization and Death Due to 2009 Pandemic Influenza A(H1N1) Disease

    Get PDF
    BACKGROUND: Severe illness due to 2009 pandemic A(H1N1) infection has been reported among persons who are obese or morbidly obese. We assessed whether obesity is a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1), independent of chronic medical conditions considered by the Advisory Committee on Immunization Practices (ACIP) to increase the risk of influenza-related complications. METHODOLOGY/PRINCIPAL FINDINGS: We used a case-cohort design to compare cases of hospitalizations and deaths from 2009 pandemic A(H1N1) influenza occurring between April-July, 2009, with a cohort of the U.S. population estimated from the 2003-2006 National Health and Nutrition Examination Survey (NHANES); pregnant women and children <2 years old were excluded. For hospitalizations, we defined categories of relative weight by body mass index (BMI, kg/m(2)); for deaths, obesity or morbid obesity was recorded on medical charts, and death certificates. Odds ratio (OR) of being in each BMI category was determined; normal weight was the reference category. Overall, 361 hospitalizations and 233 deaths included information to determine BMI category and presence of ACIP-recognized medical conditions. Among >or=20 year olds, hospitalization was associated with being morbidly obese (BMI>or=40) for individuals with ACIP-recognized chronic conditions (OR = 4.9, 95% CI 2.4-9.9) and without ACIP-recognized chronic conditions (OR = 4.7, 95%CI 1.3-17.2). Among 2-19 year olds, hospitalization was associated with being underweight (BMI<or=5(th) percentile) among those with (OR = 12.5, 95%CI 3.4-45.5) and without (OR = 5.5, 95%CI 1.3-22.5) ACIP-recognized chronic conditions. Death was not associated with BMI category among individuals 2-19 years old. Among individuals aged >or=20 years without ACIP-recognized chronic medical conditions death was associated with obesity (OR = 3.1, 95%CI: 1.5-6.6) and morbid obesity (OR = 7.6, 95%CI 2.1-27.9). CONCLUSIONS/SIGNIFICANCE: Our findings support observations that morbid obesity may be associated with hospitalization and possibly death due to 2009 pandemic H1N1 infection. These complications could be prevented by early antiviral therapy and vaccination
    • ā€¦
    corecore