11 research outputs found

    Integrative inference of gene-regulatory networks in Escherichia coli using information theoretic concepts and sequence analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although <it>Escherichia coli </it>is one of the best studied model organisms, a comprehensive understanding of its gene regulation is not yet achieved. There exist many approaches to reconstruct regulatory interaction networks from gene expression experiments. Mutual information based approaches are most useful for large-scale network inference.</p> <p>Results</p> <p>We used a three-step approach in which we combined gene regulatory network inference based on directed information (DTI) and sequence analysis. DTI values were calculated on a set of gene expression profiles from 19 time course experiments extracted from the Many Microbes Microarray Database. Focusing on influences between pairs of genes in which one partner encodes a transcription factor (TF) we derived a network which contains 878 TF - gene interactions of which 166 are known according to RegulonDB. Afterward, we selected a subset of 109 interactions that could be confirmed by the presence of a phylogenetically conserved binding site of the respective regulator. By this second step, the fraction of known interactions increased from 19% to 60%. In the last step, we checked the 44 of the 109 interactions not yet included in RegulonDB for functional relationships between the regulator and the target and, thus, obtained ten TF - target gene interactions. Five of them concern the regulator LexA and have already been reported in the literature. The remaining five influences describe regulations by Fis (with two novel targets), PhdR, PhoP, and KdgR. For the validation of our approach, one of them, the regulation of lipoate synthase (LipA) by the pyruvate-sensing pyruvate dehydrogenate repressor (PdhR), was experimentally checked and confirmed.</p> <p>Conclusions</p> <p>We predicted a set of five novel TF - target gene interactions in <it>E. coli</it>. One of them, the regulation of <it>lipA </it>by the transcriptional regulator PdhR was validated experimentally. Furthermore, we developed DTInfer, a new R-package for the inference of gene-regulatory networks from microarrays using directed information.</p

    Netzbelastungen und Netzdienstleistungen durch Elektrofahrzeuge : Metastudie

    No full text

    Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress

    Get PDF
    In late mitosis and early G1, replication origins are licensed for subsequent use by loading complexes of the minichromosome maintenance proteins 2-7 (Mcm2-7). The number of Mcm2-7 complexes loaded onto DNA greatly exceeds the number of replication origins used during S phase, but the function of the excess Mcm2-7 is unknown. Using Xenopus laevis egg extracts, we show that these excess Mcm2-7 complexes license additional dormant origins that do not. re during unperturbed S phases because of suppression by a caffeine-sensitive checkpoint pathway. Use of these additional origins can allow complete genome replication in the presence of replication inhibitors. These results suggest that metazoan replication origins are actually comprised of several candidate origins, most of which normally remain dormant unless cells experience replicative stress. Consistent with this model, using Caenorhabditis elegans, we show that partial RNAi-based knockdown of MCMs that has no observable effect under normal conditions causes lethality upon treatment with low, otherwise nontoxic, levels of the replication inhibitor hydroxyurea

    More than just a metabolic regulator - elucidation and validation of new targets of PdhR in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pyruvate dehydrogenase regulator protein (PdhR) of <it>Escherichia coli </it>acts as a transcriptional regulator in a pyruvate dependent manner to control central metabolic fluxes. However, the complete PdhR regulon has not yet been uncovered. To achieve an extended understanding of its gene regulatory network, we combined large-scale network inference and experimental verification of results obtained by a systems biology approach.</p> <p>Results</p> <p>22 new genes contained in two operons controlled by PdhR (previously only 20 regulatory targets in eight operons were known) were identified by analysing a large-scale dataset of <it>E. coli </it>from the Many Microbes Microarray Database and novel expression data from a <it>pdhR </it>knockout strain, as well as a PdhR overproducing strain. We identified a regulation of the glycolate utilization operon <it>glcDEFGBA </it>using chromatin immunoprecipitation and gel shift assays. We show that this regulation could be part of a cross-induction between genes necessary for acetate and pyruvate utilisation controlled through PdhR. Moreover, a link of PdhR regulation to the replication machinery of the cell via control of the transcription of the <it>dcw</it>-cluster was verified in experiments. This augments our knowledge of the functions of the PdhR-regulon and demonstrates its central importance for further cellular processes in <it>E. coli</it>.</p> <p>Conclusions</p> <p>We extended the PdhR regulon by 22 new genes contained in two operons and validated the regulation of the <it>glcDEFGBA </it>operon for glycolate utilisation and the <it>dcw</it>-cluster for cell division proteins experimentally. Our results provide, for the first time, a plausible regulatory link between the nutritional status of the cell and cell replication mediated by PdhR.</p

    Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress

    No full text
    In late mitosis and early G1, replication origins are licensed for subsequent use by loading complexes of the minichromosome maintenance proteins 2-7 (Mcm2-7). The number of Mcm2-7 complexes loaded onto DNA greatly exceeds the number of replication origins used during S phase, but the function of the excess Mcm2-7 is unknown. Using Xenopus laevis egg extracts, we show that these excess Mcm2-7 complexes license additional dormant origins that do not fire during unperturbed S phases because of suppression by a caffeine-sensitive checkpoint pathway. Use of these additional origins can allow complete genome replication in the presence of replication inhibitors. These results suggest that metazoan replication origins are actually comprised of several candidate origins, most of which normally remain dormant unless cells experience replicative stress. Consistent with this model, using Caenorhabditis elegans, we show that partial RNAi-based knockdown of MCMs that has no observable effect under normal conditions causes lethality upon treatment with low, otherwise nontoxic, levels of the replication inhibitor hydroxyurea

    Quantitative Signal Intensity in Fluid-Attenuated Inversion Recovery and Treatment Effect in the WAKE-UP Trial

    No full text
    International audienceBackground and Purpose— Relative signal intensity of acute ischemic stroke lesions in fluid-attenuated inversion recovery (fluid-attenuated inversion recovery relative signal intensity [FLAIR-rSI]) magnetic resonance imaging is associated with time elapsed since stroke onset with higher intensities signifying longer time intervals. In the randomized controlled WAKE-UP trial (Efficacy and Safety of MRI-Based Thrombolysis in Wake-Up Stroke Trial), intravenous alteplase was effective in patients with unknown onset stroke selected by visual assessment of diffusion weighted imaging fluid-attenuated inversion recovery mismatch, that is, in those with no marked fluid-attenuated inversion recovery hyperintensity in the region of the acute diffusion weighted imaging lesion. In this post hoc analysis, we investigated whether quantitatively measured FLAIR-rSI modifies treatment effect of intravenous alteplase. Methods— FLAIR-rSI of stroke lesions was measured relative to signal intensity in a mirrored region in the contralesional hemisphere. The relationship between FLAIR-rSI and treatment effect on functional outcome assessed by the modified Rankin Scale (mRS) after 90 days was analyzed by binary logistic regression using different end points, that is, favorable outcome defined as mRS score of 0 to 1, independent outcome defined as mRS score of 0 to 2, ordinal analysis of mRS scores (shift analysis). All models were adjusted for National Institutes of Health Stroke Scale at symptom onset and stroke lesion volume. Results— FLAIR-rSI was successfully quantified in stroke lesions in 433 patients (86% of 503 patients included in WAKE-UP). Mean FLAIR-rSI was 1.06 (SD, 0.09). Interaction of FLAIR-rSI and treatment effect was not significant for mRS score of 0 to 1 ( P =0.169) and shift analysis ( P =0.086) but reached significance for mRS score of 0 to 2 ( P =0.004). We observed a smooth continuing trend of decreasing treatment effects in relation to clinical end points with increasing FLAIR-rSI. Conclusions— In patients in whom no marked parenchymal fluid-attenuated inversion recovery hyperintensity was detected by visual judgement in the WAKE-UP trial, higher FLAIR-rSI of diffusion weighted imaging lesions was associated with decreased treatment effects of intravenous thrombolysis. This parallels the known association of treatment effect and elapsing time of stroke onset
    corecore