26 research outputs found

    Selective Light-Triggered Release of DNA from Gold Nanorods Switches Blood Clotting On and Off

    Get PDF
    Blood clotting is a precise cascade engineered to form a clot with temporal and spatial control. Current control of blood clotting is achieved predominantly by anticoagulants and thus inherently one-sided. Here we use a pair of nanorods (NRs) to provide a two-way switch for the blood clotting cascade by utilizing their ability to selectively release species on their surface under two different laser excitations. We selectively trigger release of a thrombin binding aptamer from one nanorod, inhibiting blood clotting and resulting in increased clotting time. We then release the complementary DNA as an antidote from the other NR, reversing the effect of the aptamer and restoring blood clotting. Thus, the nanorod pair acts as an on/off switch. One challenge for nanobiotechnology is the bio-nano interface, where coronas of weakly adsorbed proteins can obscure biomolecular function. We exploit these adsorbed proteins to increase aptamer and antidote loading on the nanorods.National Science Foundation (U.S.) (Grant DMR #0906838

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Tailoring Carbon Nanotubes Properties for Gene Delivery Applications

    No full text
    La ter脿pia g猫nica s鈥檈st脿 convertit en una t猫cnica innovadora per tal de curar una malaltia mitjan莽ant la inserci贸 de gens dins les c猫l鈥ules i 貌rgans d鈥檜n individu. El repte recau en l鈥檃lliberaci贸 eficient I segura de l鈥櫭燾id nucleic terap猫utic a les c猫l鈥ules i 貌rgans objectiu. De tots els vectors sint猫tics desenvolupats recentment, els nanotubs de carboni s贸n una elecci贸 interessant que ja ha demostrat prometre considerablement com a sistema alliberaci贸, gr脿cies a la seva proporci贸 amplada-al莽ada i la seva capacitat de traspassar la membrana cel鈥ular. El problema que sorgeix 茅s la seva limitada solubilitzaci贸 i l鈥檃gregaci贸 espont脿nia in vivo. Amb l鈥檕bjectiu de desenvolupar nous dissenys basats en nanotubs de carboni per a la formaci贸 de complexos capa莽os de transfectar ADN a les c猫l鈥ules, amb un a bon registre de biocompatibilitat i viabilitat cel鈥ular, s鈥檋an desenvolupat diferents estrat猫gies. En primer lloc, s鈥檋a optimitzat la funcionalitzaci贸 covalent dels nanotubs per mitj脿 de t猫cniques de plasma. Aquest tipus de modificaci贸 permet aconseguir tan superf铆cies altament reactives capaces d鈥檜nir ADN a trav茅s d鈥檜na mol猫cula enlla莽ant, com superf铆cies carregades positivament que permeten l鈥檈nvolcall de l鈥櫭燾id nucleic per interacci贸 electrost脿tica. En segon lloc, s鈥檋a avaluat la dispersi贸 de nanotubs de diferents mides per mitj脿 d鈥檜n agent estabilitzant incloent un surfactant, un pol铆mer amfif铆lic i prote茂nes. Aquesta naturalesa qu铆mica de la superf铆cie del nanotub, juntament amb altres propietats f铆siques com ara l鈥檃llargada o el di脿metre, t茅 un efecte directe en la dispersibilitat, citotoxicitat i biodistribuci贸 d鈥檃quest sistemes. L鈥櫭簊 de prote茂nes per functionalitzar nanopart铆cules 茅s encoratjador ja que forma la corona de prote茂na a la seva superf铆cie. Tals conjugats mostren una elevada capacitat de carregar ADN i permeten la regulaci贸 de la seva alliberaci贸 mitjan莽ant la manipulaci贸 de la composici贸 de la corona.La terapia g茅nica se est谩 convirtiendo en una t茅cnica innovadora para curar enfermedades mediante la inserci贸n de genes dentro de las c茅lulas y 贸rganos de un individuo. El reto recae en la liberaci贸n eficiente y segura de un acido nucleico terap茅utico a los 贸rganos objectivo. De todos los vectores sint茅ticos desarrollados recientemente, los nanotubos de carbono son una elecci贸n interesante que ya ha demostrado prometer considerablemente como sistema de liberaci贸n gracias a su proporci贸n anchura-altura y su capacidad de traspasar la membrana celular. El problema que surge es su limitada solubilizaci贸n i la agregaci贸n espontanea in vivo. Con el objetivo de desarrollar nuevos dise帽os basados en nanotubos de carbono para la formaci贸n de complejos capaces te transfectar ADN a las c茅lulas, con un buen registro de biocompatibilidad y viabilidad celular, se han desarrollado diferentes estrategias. En primer lugar, se ha optimizado la funcionalizaci贸n covalente de los nanotubos por medio de t茅cnicas de plasma. Este tipo de modificaci贸n permite conseguir tanto superficies altamente reactivas capaces de unir ADN a traves de una mol茅cula enlazante, como cargadas positivamente que permiten el envoltorio del acido nucleico por interacci贸n electrost谩tica. En segundo lugar, se han evaluado la dispersi贸n de nanotubos de medidas diferentes por mediado de un agente estabilizante que incluye un surfactante un pol铆mero amfif铆lico y prote铆nas. Esta naturaleza qu铆mica de la superficie del nanotubo, junto con otras propiedades f铆sicas como su longitud o di谩metro, tiene un efecto directo en la dispersibilidad, citotoxicidad y biodistribuci贸n de estos sitemas. El uso de prote铆nas para funcionalizar nanopart铆culas es alentador ya que forma la corona de prote铆nas en su superficie. Dichos compuestos muestran una elevada capacidad de cargar ADN y permiten la regulaci贸n de su liberaci贸n mediante la manipulaci贸n de la composici贸n de la corona.Gene therapy has become an increasing innovative technique to treat disease by the insertion of genes into individual鈥檚 cells and tissues. The challenge is to efficiently and safely deliver the therapeutic nucleic acid into the target cells and organs. Among the synthetic vectors recently developed, carbon nanotubes are an interesting choice as they have already demonstrated considerable promise as delivery systems due to their high aspect ratio and their capacity to translocate the cell membrane. The problem that arises is their limited solubilization and spontaneous aggregation in vivo. Aiming to engineer new carbon nanotube-based designs for the formation of complexes able to transfect DNA/RNA to cells with a good track of biocompatibility and cell viability, different strategies have been developed. Firstly, the covalent functionalization of carbon nanotubes by plasma techniques has been optimized. This type of modification allows to either achieving highly reactive surfaces able to covalently bind DNA towards a chemical linker or a positively charged nanotube surface enabling the wrapping of the nucleic acid by electrostatic interaction. Secondly, the dispersion of the differently-sized carbon nanotubes by means of a stabilizing agent including a surfactant, an amphiphilic polymer and proteins has been assessed. The chemical nature of the modifying moieties on the carbon nanotube, alongside to other physical properties such as length or diameter, has a direct effect on the dispersibility, cytotoxicity and biodistribution of these systems. The use of proteins in the nanoparticle functionalization is encouraging due to the formation of the protein corona on its surface. Such complex exhibits high DNA load capacities and allows a tunable payload release by manipulating the corona compositio

    Precision nanomedicines for prostate cancer

    No full text
    Editorial. Published online: 27 February 2018Anna Cifuentes-Rius, Lisa M Butler and Nicolas H Voelcke

    In vivo fate of carbon nanotubes with different physicochemical properties for gene delivery applications

    No full text
    Gene therapy has arisen as a pioneering technique to treat diseases by direct employment of nucleic acids as medicine. The major historical problem is to develop efficient and safe systems for the delivery of therapeutic genes into the target cells. Carbon nanotubes (CNTs) have demonstrated considerable promise as delivery vectors due to their (i) high aspect ratio and (ii) capacity to translocate through plasma membranes, known as the nanoneedle effect. To leverage these advantages, close attention needs to be paid to the physicochemical characteristics of the CNTs used. CNTs with different diameters (thinner and thicker) were treated by chemical oxidation to produce shorter fragments. Rigid (thick) and flexible (thin) CNTs, and their shortened versions, were coated with polyallylamine (ppAA) by plasma-enhanced chemical vapor deposition. The ppAA coating leads to a positively charged CNT surface that is able to electrostatically bind the green fluorescent protein plasmid reporter. This study shows how rigidity and length can affect their (i) behavior in biological media, (ii) ability to transfect in vitro, and (iii) biodistribution in vivo. This study also generates a set of basic design rules for the development of more efficient CNT-based gene-delivery vectors

    Gold-Decorated Porous Silicon Nanopillars for Targeted Hyperthermal Treatment of Bacterial Infections

    No full text
    In order to address the issue of pathogenic bacterial colonization of diabetic wounds, a more direct and robust approach is required, which relies on a physical form of bacterial destruction in addition to the conventional biochemical approach (i.e., antibiotics). Targeted bacterial destruction through the use of photothermally active nanomaterials has recently come into the spotlight as a viable approach to solving the rising problem of antibiotic resistant microorganisms. Materials with high absorption coefficients in the near-infrared (NIR) region of the electromagnetic spectrum show promise as alternative antibacterial therapeutic agents, since they preclude the development of bacterial resistance and can be activated on demand. Here were report on a novel approach for the fabrication of gold nanoparticle decorated porous silicon nanopillars with tunable geometry that demonstrate excellent photothermal conversion properties when irradiated with a 808 nm laser. These photothermal antibacterial properties are demonstrated <i>in vitro</i> against the Gram-positive bacteria <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and Gram-negative <i>Escherichia coli</i> (<i>E. coli</i>). Results show a reduction in bacterial viability of up to 99% after 10 min of laser irradiation. We also show an increase in antibacterial performance after modifying the nanopillars with <i>S. aureus</i> targeting antibodies causing up to a 10-fold increase in bactericidal efficiency compared to <i>E. coli</i>. In contrast, the nanomaterial resulted in minimal disruption of metabolic processes in human foreskin fibroblasts (HFF) after an equivalent period of irradiation
    corecore