56 research outputs found

    The multicenter European Biological Variation Study (EuBIVAS): a new glance provided by the Principal Component Analysis (PCA), a machine learning unsupervised algorithms, based on the basic metabolic panel linked measurands

    Get PDF
    Abstract Objectives The European Biological Variation Study (EuBIVAS), which includes 91 healthy volunteers from five European countries, estimated high-quality biological variation (BV) data for several measurands. Previous EuBIVAS papers reported no significant differences among laboratories/population; however, they were focused on specific set of measurands, without a comprehensive general look. The aim of this paper is to evaluate the homogeneity of EuBIVAS data considering multivariate information applying the Principal Component Analysis (PCA), a machine learning unsupervised algorithm. Methods The EuBIVAS data for 13 basic metabolic panel linked measurands (glucose, albumin, total protein, electrolytes, urea, total bilirubin, creatinine, phosphatase alkaline, aminotransferases), age, sex, menopause, body mass index (BMI), country, alcohol, smoking habits, and physical activity, have been used to generate three databases developed using the traditional univariate and the multivariate Elliptic Envelope approaches to detect outliers, and different missing-value imputations. Two matrix of data for each database, reporting both mean values, and "within-person BV" (CVP) values for any measurand/subject, were analyzed using PCA. Results A clear clustering between males and females mean values has been identified, where the menopausal females are closer to the males. Data interpretations for the three databases are similar. No significant differences for both mean and CVPs values, for countries, alcohol, smoking habits, BMI and physical activity, have been found. Conclusions The absence of meaningful differences among countries confirms the EuBIVAS sample homogeneity and that the obtained data are widely applicable to deliver APS. Our data suggest that the use of PCA and the multivariate approach may be used to detect outliers, although further studies are required

    The European Biological Variation Study (EuBIVAS):Biological variation data for testosterone, follicle stimulating hormone, prolactin, luteinizing hormone and dehydroepiandrosterone sulfate in men

    Get PDF
    BACKGROUND: Knowledge of biological variation (BV) of hormones is essential for interpretation of laboratory tests and for diagnostics of endocrinological and reproductive diseases. There is a lack of robust BV data for many hormones in men.METHODS: We used serum samples collected weekly over 10 weeks from the European Biological Variation Study (EuBIVAS) to determine BV of testosterone, follicle-stimulating hormone (FSH), prolactin, luteinizing hormone (LH) and dehydroepiandrosterone sulfate (DHEA-S) in 38 men. We derived within-subject (CVI) and between-subject (CVG) BV estimates by CV-ANOVA after trend, outlier, and homogeneity analysis and calculated reference change values, index of individuality (II), and analytical performance specifications.RESULTS: The CVI estimates were 10 % for testosterone, 8 % for FSH, 13 % for prolactin, 22 % for LH, and 9 % for DHEA-S, respectively. The IIs ranged between 0.14 for FSH to 0.66 for LH, indicating high individuality.CONCLUSIONS: In this study, we have used samples from the highly powered EuBIVAS study to derive BV estimates for testosterone, FSH, prolactin, LH and DHEA-S in men. Our data confirm previously published BV estimates of testosterone, FSH and LH. For prolactin and DHEA-S BV data for men are reported for the first time.</p

    The European Biological Variation Study (EuBIVAS):Biological variation data for testosterone, follicle stimulating hormone, prolactin, luteinizing hormone and dehydroepiandrosterone sulfate in men

    Get PDF
    BACKGROUND: Knowledge of biological variation (BV) of hormones is essential for interpretation of laboratory tests and for diagnostics of endocrinological and reproductive diseases. There is a lack of robust BV data for many hormones in men.METHODS: We used serum samples collected weekly over 10 weeks from the European Biological Variation Study (EuBIVAS) to determine BV of testosterone, follicle-stimulating hormone (FSH), prolactin, luteinizing hormone (LH) and dehydroepiandrosterone sulfate (DHEA-S) in 38 men. We derived within-subject (CVI) and between-subject (CVG) BV estimates by CV-ANOVA after trend, outlier, and homogeneity analysis and calculated reference change values, index of individuality (II), and analytical performance specifications.RESULTS: The CVI estimates were 10 % for testosterone, 8 % for FSH, 13 % for prolactin, 22 % for LH, and 9 % for DHEA-S, respectively. The IIs ranged between 0.14 for FSH to 0.66 for LH, indicating high individuality.CONCLUSIONS: In this study, we have used samples from the highly powered EuBIVAS study to derive BV estimates for testosterone, FSH, prolactin, LH and DHEA-S in men. Our data confirm previously published BV estimates of testosterone, FSH and LH. For prolactin and DHEA-S BV data for men are reported for the first time.</p

    Within- and between-subject biological variation data for tumor markers based on the European Biological Variation Study

    Get PDF
    Postponed access: the file will be available after 2022-05-10Objectives: Reliable biological variation (BV) data are required for the clinical use of tumor markers in the diagnosis and monitoring of treatment effects in cancer. The European Biological Variation Study (EuBIVAS) was established by the EFLM Biological Variation Working Group to deliver BV data for clinically important measurands. In this study, EuBIVAS-based BV estimates are provided for cancer antigen (CA) 125, CA 15-3, CA 19-9, carcinoembryonic antigen, cytokeratin-19 fragment, alpha‐fetoprotein and human epididymis protein 4. Methods: Subjects from five European countries were enrolled in the study, and weekly samples were collected from 91 healthy individuals (53 females and 38 males; 21–69 years old) for 10 consecutive weeks. All samples were analyzed in duplicate within a single run. After excluding outliers and homogeneity analysis, the BVs of tumor markers were determined by CV-ANOVA on trend-corrected data, when relevant (Røraas method). Results: Marked individuality was found for all tumor markers. CYFRA 21-1 was the measurand with the highest index of individuality (II) at 0.67, whereas CA 19-9 had the lowest II at 0.07. The CV I s of HE4, CYFRA 21-1, CA 19-9, CA 125 and CA 15-3 of pre- and postmenopausal females were significantly different from each other. Conclusions: This study provides updated BV estimates for several tumor markers, and the findings indicate that marked individuality is characteristic. The use of reference change values should be considered when monitoring treatment of patients by means of tumor markers.publishedVersio

    Analytical performance specifications for 25-hydroxyvitamin d examinations

    Get PDF
    Currently the 25-hydroxy vitamin D (25(OH)D) concentration is thought to be the best estimate of the vitamin D status of an individual. Unfortunately, its measurement remains complex, despite recent technological advances. We evaluated the biological variation (BV) of 25(OH)D in order to set analytical performance specifications (APS) for measurement uncertainty (MU). Six European laboratories recruited 91 healthy participants. The 25(OH)D concentrations in K3-EDTA plasma were examined weekly for up to 10 weeks in duplicate on a Lumipulse G1200 (Fujirebio, Tokyo, Japan). The linear regression of the mean 25(OH)D concentrations at each blood collection showed that participants were not in a steady state. The dissection of the 10-sample collection into two subsets, namely collections 1–5 and 6–10, did not allow for correction of the lack of homogene-ity: estimates of the within-subject BV ranged from 5.8% to 7.1% and the between-subject BV ranged from 25.0% to 39.2%. Methods that would differentiate a difference induced by 25(OH)D supple-mentation at p < 0.05 should have MU < 13.6%, while at p < 0.01, the MU should be <9.6%. The development of APS using BV assumes a steady state of patients. The findings in this study suggest that patients are not in steady state. Therefore, APS that are based on MU appear to be more appro-priate

    European Biological Variation Study (EuBIVAS): Within- and between-subject biological variation estimates for serum thyroid biomarkers based on weekly samplings from 91 healthy participants

    Get PDF
    Objectives: Thyroid biomarkers are fundamental for the diagnosis of thyroid disorders and for the monitoring and treatment of patients with these diseases. The knowledge of biological variation (BV) is important to define analytical performance specifications (APS) and reference change values (RCV). The aim of this study was to deliver BV estimates for thyroid stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), thyroglobulin (TG), and calcitonin (CT). Methods: Analyses were performed on serum samples obtained from the European Biological Variation Study population (91 healthy individuals from six European laboratories; 21–69 years) on the Roche Cobas e801 at the San Raffaele Hospital (Milan, Italy). All samples from each individual were evaluated in duplicate within a single run. The BV estimates with 95% CIs were obtained by CV-ANOVA, after analysis of variance homogeneity and outliers. Results: The within-subject (CV I ) BV estimates were for TSH 17.7%, FT3 5.0%, FT4 4.8%, TG 10.3, and CT 13.0%, all significantly lower than those reported in the literature. No significant differences were observed for BV estimates between men and women. Conclusions: The availability of updated, in the case of CT not previously published, BV estimates for thyroid markers based on the large scale EuBIVAS study allows for refined APS and associated RCV applicable in the diagnosis and management of thyroid and related diseases.publishedVersio

    The European Biological Variation Study (EuBIVAS): Biological Variation Data for Coagulation Markers Estimated by a Bayesian Model

    Get PDF
    Background For biological variation (BV) data to be safely used, data must be reliable and relevant to the population in which they are applied. We used samples from the European Biological Variation Study (EuBIVAS) to determine BV of coagulation markers by a Bayesian model robust to extreme observations and used the derived within-participant BV estimates [CVP(i)] to assess the applicability of the BV estimates in clinical practice. Method Plasma samples were drawn from 92 healthy individuals for 10 consecutive weeks at 6 European laboratories and analyzed in duplicate for activated partial thromboplastin time (APTT), prothrombin time (PT), fibrinogen, D-dimer, antithrombin (AT), protein C, protein S free, and factor VIII (FVIII). A Bayesian model with Student t likelihoods for samples and replicates was applied to derive CVP(i) and predicted BV estimates with 95% credibility intervals. Results For all markers except D-dimer, CVP(i) were homogeneously distributed in the overall study population or in subgroups. Mean within-subject estimates (CVI) were <5% for APTT, PT, AT, and protein S free, <10% for protein C and FVIII, and <12% for fibrinogen. For APTT, protein C, and protein S free, estimates were significantly lower in men than in women ≤50 years. Conclusion For most coagulation markers, a common CVI estimate for men and women is applicable, whereas for APTT, protein C, and protein S free, sex-specific reference change values should be applied. The use of a Bayesian model to deliver individual CVP(i) allows for improved interpretation and application of the data.publishedVersio

    Analytical performance specifications for the measurement uncertainty of 24,25-dihydroxyvitamin D examinations

    Get PDF
    Objectives: The exploration of the metabolites in the degradation pathways of vitamin D (VTD) has gained importance in recent years and simultaneous quantitation of twenty-five-hydroxy vitamin D (25(OH)D) mass concentration together with 24,25-dihydroxyvitamin D (24,25(OH)2D) has been proposed as a newer approach to define VTD deficiency. Yet, no data are available on 24,25(OH)2D biological variation (BV). In this study, we evaluated 24,25(OH)2D's BV on the European Biological Variation Study (EuBIVAS) cohort samples to determine if analytical performance specifications (APS) for 24,25(OH)2D could be generated. Methods: Six European laboratories recruited 91 healthy participants. 25(OH)D and 24,25(OH)2D concentrations in K3-EDTA plasma were examined weekly for up to 10 weeks in duplicate with a validated LC-MS/MS method. The Vitamin D Metabolite Ratio (24,25(OH)2D divided by 25(OH)D × 100) was also calculated at each time point. Results: Linear regression of the mean 24,25(OH)2D concentrations at each blood collection showed participants were not in steady state. Variations of 24,25(OH)2D over time were significantly positively associated with the slopes of 25(OH)D concentrations over time and the concentration of 25(OH)D of the participant at inclusion, and negatively associated with body mass index (BMI), but not with age, gender, or location of the participant. The variation of the 24,25(OH)2D concentration in participants over a 10 weeks period was 34.6%. Methods that would detect a significant change linked to the natural production of 24,25(OH)2D over this period at p&lt;0.05 would need a relative measurement uncertainty (u%)&lt;14.9% while at p&lt;0.01, relative measurement uncertainty should be &lt;10.5%. Conclusions: We have defined for the first time APS for 24,25(OH)2D examinations. According to the growing interest in this metabolite, several laboratories and manufacturers might aim to develop specific methods for its determination. The results presented in this paper are thus necessary prerequisites for the validation of such methods.</p

    Within- and between-subject biological variation data for serum zinc, copper and selenium obtained from 68 apparently healthy Turkish subjects

    Get PDF
    Postponed access: the file will be available after 2022-10-22Objectives: Trace elements (TrEL) are nutritionally essential components in maintaining health and preventing diseases. There is a lack of reliable biological variation (BV) data for TrELs, required for the diagnosis and monitoring of TrEL disturbances. In this study, we aimed to provide updated within- and between-subject BV estimates for zinc (Zn), copper (Cu) and selenium (Se). Methods: Weekly serum samples were drawn from 68 healthy subjects (36 females and 32 males) for 10 weeks and stored at −80 °C prior to analysis. Serum Zn, Cu and Se levels were measured using inductively-coupled plasma mass spectrometry (ICP-MS). Outlier and variance homogeneity analyses were performed followed by CV-ANOVA (Røraas method) to determine BV and analytical variation estimates with 95% CI and the associated reference change values (RCV) for all subjects, males and females. Results: Significant differences in mean concentrations between males and females were observed, with absolute and relative (%) differences for Zn at 0.5 μmol/L (3.5%), Cu 2.0 μmol/L (14.1%) and Se 0.06 μmol/L (6.0%). The within-subject BV (CVI [95% CI]) estimates were 8.8% (8.2–9.3), 7.8% (7.3–8.3) and 7.7% (7.2–8.2) for Zn, Cu and Se, respectively. Within-subject biological variation (CVI) estimates derived for male and female subgroups were similar for all three TrELs. Marked individuality was observed for Cu and Se. Conclusions: The data of this study provides updated BV estimates for serum Zn, Cu and Se derived from a stringent protocol and state of the art methodologies. Furthermore, Cu and Se display marked individuality, highlighting that population based reference limits should not be used in the monitoring of patients.publishedVersio

    The European Biological Variation Study (EuBIVAS): Biological Variation Data for Coagulation Markers Estimated by a Bayesian Model.

    Get PDF
    Abstract Background For biological variation (BV) data to be safely used, data must be reliable and relevant to the population in which they are applied. We used samples from the European Biological Variation Study (EuBIVAS) to determine BV of coagulation markers by a Bayesian model robust to extreme observations and used the derived within-participant BV estimates [CVP(i)] to assess the applicability of the BV estimates in clinical practice. Method Plasma samples were drawn from 92 healthy individuals for 10 consecutive weeks at 6 European laboratories and analyzed in duplicate for activated partial thromboplastin time (APTT), prothrombin time (PT), fibrinogen, D-dimer, antithrombin (AT), protein C, protein S free, and factor VIII (FVIII). A Bayesian model with Student t likelihoods for samples and replicates was applied to derive CVP(i) and predicted BV estimates with 95% credibility intervals. Results For all markers except D-dimer, CVP(i) were homogeneously distributed in the overall study population or in subgroups. Mean within-subject estimates (CVI) were &lt;5% for APTT, PT, AT, and protein S free, &lt;10% for protein C and FVIII, and &lt;12% for fibrinogen. For APTT, protein C, and protein S free, estimates were significantly lower in men than in women ≤50 years. Conclusion For most coagulation markers, a common CVI estimate for men and women is applicable, whereas for APTT, protein C, and protein S free, sex-specific reference change values should be applied. The use of a Bayesian model to deliver individual CVP(i) allows for improved interpretation and application of the data
    • …
    corecore