12 research outputs found

    An increased response to experimental muscle pain is related to psychological status in women with chronic non-traumatic neck-shoulder pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neck-shoulder pain conditions, e.g., chronic trapezius myalgia, have been associated with sensory disturbances such as increased sensitivity to experimentally induced pain. This study investigated pain sensitivity in terms of bilateral pressure pain thresholds over the trapezius and tibialis anterior muscles and pain responses after a unilateral hypertonic saline infusion into the right legs tibialis anterior muscle and related those parameters to intensity and area size of the clinical pain and to psychological factors (sleeping problems, depression, anxiety, catastrophizing and fear-avoidance).</p> <p>Methods</p> <p>Nineteen women with chronic non-traumatic neck-shoulder pain but without simultaneous anatomically widespread clinical pain (NSP) and 30 age-matched pain-free female control subjects (CON) participated in the study.</p> <p>Results</p> <p>NSP had lower pressure pain thresholds over the trapezius and over the tibialis anterior muscles and experienced hypertonic saline-evoked pain in the tibialis anterior muscle to be significantly more intense and locally more widespread than CON. More intense symptoms of anxiety and depression together with a higher disability level were associated with increased pain responses to experimental pain induction and a larger area size of the clinical neck-shoulder pain at its worst.</p> <p>Conclusion</p> <p>These results indicate that central mechanisms e.g., central sensitization and altered descending control, are involved in chronic neck-shoulder pain since sensory hypersensitivity was found in areas distant to the site of clinical pain. Psychological status was found to interact with the perception, intensity, duration and distribution of induced pain (hypertonic saline) together with the spreading of clinical pain. The duration and intensity of pain correlated negatively with pressure pain thresholds.</p

    Snapshots of Catalysis in Rhizobium Etli Pyruvate Carboxylase

    No full text

    Activation and inhibition of pyruvate carboxylase from Rhizobium etli

    No full text
    While crystallographic structures of the R. etli pyruvate carboxylase (PC) holoenzyme revealed the location and probable positioning of the essential activator, Mg(2+), and nonessential activator, acetyl-CoA, an understanding of how they affect catalysis remains unclear. The current steady-state kinetic investigation indicates that both acetyl-CoA and Mg(2+) assist in coupling the MgATP-dependent carboxylation of biotin in the biotin carboxylase (BC) domain with pyruvate carboxylation in the carboxyl transferase (CT) domain. Initial velocity plots of free Mg(2+) vs pyruvate were nonlinear at low concentrations of Mg(2+) and a nearly complete loss of coupling between the BC and CT domain reactions was observed in the absence of acetyl-CoA. Increasing concentrations of free Mg(2+) also resulted in a decrease in the K(a) for acetyl-CoA. Acetyl phosphate was determined to be a suitable phosphoryl donor for the catalytic phosphorylation of MgADP, while phosphonoacetate inhibited both the phosphorylation of MgADP by carbamoyl phosphate (K(i) = 0.026 mM) and pyruvate carboxylation (K(i) = 2.5 mM). In conjunction with crystal structures of T882A R. etli PC mutant cocrystallized with phosphonoacetate and MgADP, computational docking studies suggest that phosphonoacetate could coordinate to one of two Mg(2+) metal centers in the BC domain active site. Based on the pH profiles, inhibition studies, and initial velocity patterns, possible mechanisms for the activation, regulation, and coordination of catalysis between the two spatially distinct active sites in pyruvate carboxylase from R. etli by acetyl-CoA and Mg(2+) are described.Tonya N. Zeczycki, Ann L. Menefee, Sarawut Jitrapakdee, John C. Wallace, Paul V. Attwood, Martin St. Maurice, and W. Wallace Clelan

    Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli

    No full text
    The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO(3)(-), Lys245, Glu218, and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5- and 4-fold increase in k(cat) for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO(3)(-) by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO(2) and PO(4)(3-). PO(4)(3-) then acts as the base to deprotonate the tethered biotin at the N(1)-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO(2) to give carboxybiotin. The formation of a distinct salt bridge between Arg353 and Glu248 is proposed to aid in partially precluding carboxybiotin from reentering the biotin carboxylase active site, thus preventing its premature decarboxylation prior to the binding of a carboxyl acceptor in the carboxyl transferase domain.Tonya N. Zeczycki, Ann L. Menefee, Abdussalam Adina-Zada, Sarawut Jitrapakdee, Kathy H. Surinya, John C. Wallace, Paul V. Attwood, Martin St. Maurice and W. Wallace Clelan

    Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from rhizobium etli

    No full text
    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family.Adam D. Lietzan, Ann L. Menefee, Tonya N. Zeczycki, Sudhanshu Kumar, Paul V. Attwood, John C. Wallace, W. Wallace Cleland and Martin St. Mauric

    Defining Mechanisms of Recurrence Following Apical Prolapse Repair Based on Imaging Criteria

    No full text
    BackgroundProlapse recurrence after transvaginal surgical repair is common; however, its mechanisms are ill-defined. A thorough understanding of how and why prolapse repairs fail is needed to address their high rate of anatomic recurrence and to develop novel therapies to overcome defined deficiencies.ObjectiveThis study aimed to identify mechanisms and contributors of anatomic recurrence after vaginal hysterectomy with uterosacral ligament suspension (native tissue repair) vs transvaginal mesh (VM) hysteropexy surgery for uterovaginal prolapse.Study designThis multicenter study was conducted in a subset of participants in a randomized clinical trial by the Eunice Kennedy Shriver National Institute of Child Health and Human Development Pelvic Floor Disorders Network. Overall, 94 women with uterovaginal prolapse treated via native tissue repair (n=48) or VM hysteropexy (n=46) underwent pelvic magnetic resonance imaging at rest, maximal strain, and poststrain rest (recovery) 30 to 42 months after surgery. Participants who desired reoperation before 30 to 42 months were imaged earlier to assess the impact of the index surgery. Using a novel 3-dimensional pelvic coordinate system, coregistered midsagittal images were obtained to assess study outcomes. Magnetic resonance imaging-based anatomic recurrence (failure) was defined as prolapse beyond the hymen. The primary outcome was the mechanism of failure (apical descent vs anterior vaginal wall elongation), including the frequency and site of failure. Secondary outcomes included displacement of the vaginal apex and perineal body and change in the length of the anterior wall, posterior wall, vaginal perimeter, and introitus of the vagina from rest to strain and rest to recovery. Group differences in the mechanism, frequency, and site of failure were assessed using the Fisher exact tests, and secondary outcomes were compared using Wilcoxon rank-sum tests.ResultsOf the 88 participants analyzed, 37 (42%) had recurrent prolapse (VM hysteropexy, 13 of 45 [29%]; native tissue repair, 24 of 43 [56%]). The most common site of failure was the anterior compartment (VM hysteropexy, 38%; native tissue repair, 92%). The primary mechanism of recurrence was apical descent (VM hysteropexy, 85%; native tissue repair, 67%). From rest to strain, failures (vs successes) had greater inferior displacement of the vaginal apex (difference,&nbsp;-12 mm; 95% confidence interval,&nbsp;-19 to&nbsp;-6) and perineal body (difference,&nbsp;-7 mm; 95% confidence interval,&nbsp;-11 to&nbsp;-4) and elongation of the anterior vaginal wall (difference, 12 mm; 95% confidence interval, 8-16) and vaginal introitus (difference, 11 mm; 95% confidence interval, 7-15).ConclusionThe primary mechanism of prolapse recurrence following vaginal hysterectomy with uterosacral ligament suspension or VM hysteropexy was apical descent. In addition, greater inferior descent of the vaginal apex and perineal body, lengthening of the anterior vaginal wall, and increased size of the vaginal introitus with strain were associated with anatomic failure. Further studies are needed to provide additional insight into the mechanism by which these factors contribute to anatomic failure
    corecore