29 research outputs found

    Species-level divergences in multiple functional traits between the two endemic subspecies of Blue Chaffinches Fringilla teydea in Canary Islands

    Get PDF
    Background: One of the biggest challenges in avian taxonomy is the delimitation of allopatric species because their reproductive incompatibility cannot be directly studied in the wild. Instead, reproductive incompatibility has to be inferred from multiple, divergent character sets that indicate a low likelihood of allopatric populations amalgamating upon secondary contact. A set of quantitative criteria for species delimitation has been developed for avian taxonomy. Results: Here, we report a broad multi-trait comparison of the two insular subspecies of the Blue Chaffinch Fringilla teydea, endemic to the pine forests of Tenerife (ssp. teydea) and Gran Canaria (ssp. polatzeki) in the Canary Islands. We found that the two taxa were reciprocally monophyletic in their whole mitogenomes and two Z chromosome introns. The genetic distance in mitogenomes indicates around 1 Mya of allopatric evolution. There were diagnostic differences in body morphometrics, song and plumage reflectance spectra, whose combined divergence score (=11) exceeds the threshold level (=7) set for species delimitation by Tobias et al. (Ibis 152:724–746, 2010). Moreover, we found a marked divergence in sperm lengths with little range overlap. Relatively long sperm with low intra- and intermale CV compared to other passerines suggest a mating system with high levels of sperm competition (extrapair paternity) in these taxa. Conclusion: The large and diagnostic divergences in multiple functional traits qualify for species rank, i.e., Tenerife Blue Chaffinch (Fringilla teydea) and Gran Canaria Blue Chaffinch (Fringilla polatzeki). We encourage a wider use of sperm traits in avian taxonomy because sperm divergences might signal reproductive incompatibility at the postcopulatory prezygotic stage, especially in species with sperm competition

    Towards the simplification of MHC typing protocols: targeting classical MHC class II genes in a passerine, the pied flycatcher Ficedula hypoleuca

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major Histocompatibility Complex (MHC) has drawn the attention of evolutionary biologists due to its importance in crucial biological processes, such as sexual selection and immune response in jawed vertebrates. However, the characterization of classical MHC genes subjected to the effects of natural selection still remains elusive in many vertebrate groups. Here, we have tested the suitability of flanking intron sequences to guide the selective exploration of classical MHC genes driving the co-evolutionary dynamics between pathogens and their passerine (Aves, Order Passeriformes) hosts.</p> <p>Findings</p> <p>Intronic sequences flanking the usually polymorphic exon 2 were isolated from different species using primers sitting on conserved coding regions of MHC class II genes (β chain). Taking the pied flycatcher <it>Ficedula hypoleuca</it> as an example, we demonstrate that careful primer design can evade non-classical MHC gene and pseudogene amplification. At least four polymorphic and expressed loci were co-replicated using a single pair of primers in five non-related individuals (N = 28 alleles). The cross-amplification and preliminary inspection of similar MHC fragments in eight unrelated songbird taxa suggests that similar approaches can also be applied to other species.</p> <p>Conclusions</p> <p>Intron sequences flanking the usually polymorphic exon 2 may assist the specific investigation of classical MHC class II B genes in species characterized by extensive gene duplication and pseudogenization. Importantly, the evasion of non-classical MHC genes with a more specific function and non-functional pseudogenes may accelerate data collection and diminish lab costs. Comprehensive knowledge of gene structure, polymorphism and expression profiles may be useful not only for the selective examination of evolutionarily relevant genes but also to restrict chimera formation by minimizing the number of co-amplifying loci.</p

    Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus

    Get PDF
    The genes of the major histocompatibility complex (MHC) are attractive candidates for investigating the link between adaptive variation and individual fitness. High levels of diversity at the MHC are thought to be the result of parasite-mediated selection and there is growing evidence to support this theory. Most studies, however, target just a single gene within the MHC and infer any evidence of selection to be representative of the entire gene region. Here we present data from three MHC class II beta genes (DPB, DQB, and DRB) for brown hares in two geographic regions and compare them against previous results from a class II alpha-chain gene (DQA). We report moderate levels of diversity and high levels of population differentiation in the DQB and DRB genes (Na = 11, Dest = 0.071 and Na = 15, Dest = 0.409, respectively), but not for the DPB gene (Na = 4, Dest = 0.00). We also detected evidence of positive selection within the peptide binding region of the DQB and DRB genes (95% CI, ω > 1.0) but found no signature of selection for DPB. Mutation and recombination were both found to be important processes shaping the evolution of the class II genes. Our findings suggest that while diversifying selection is a significant contributor to the generally high levels of MHC diversity, it does not act in a uniform manner across the entire MHC class II region. The beta-chain genes that we have characterized provide a valuable set of MHC class II markers for future studies of the evolution of adaptive variation in Leporids

    High major histocompatibility complex class I polymorphism despite bottlenecks in wild and domesticated populations of the zebra finch ()

    Get PDF
    Background Two subspecies of zebra finch, Taeniopygia guttata castanotis and T. g. guttata are native to Australia and the Lesser Sunda Islands, respectively. The Australian subspecies has been domesticated and is now an important model system for research. Both the Lesser Sundan subspecies and domesticated Australian zebra finches have undergone population bottlenecks in their history, and previous analyses using neutral markers have reported reduced neutral genetic diversity in these populations. Here we characterize patterns of variation in the third exon of the highly variable major histocompatibility complex (MHC) class I α chain. As a benchmark for neutral divergence, we also report the first mitochondrial NADH dehydrogenase 2 (ND2) sequences in this important model system. Results Despite natural and human-mediated population bottlenecks, we find that high MHC class I polymorphism persists across all populations. As expected, we find higher levels of nucleotide diversity in the MHC locus relative to neutral loci, and strong evidence of positive selection acting on important residues forming the peptide-binding region (PBR). Clear population differentiation of MHC allele frequencies is also evident, and this may be due to adaptation to new habitats and associated pathogens and/or genetic drift. Whereas the MHC Class I locus shows broad haplotype sharing across populations, ND2 is the first locus surveyed to date to show reciprocal monophyly of the two subspecies. Conclusions Despite genetic bottlenecks and genetic drift, all surveyed zebra finch populations have maintained high MHC Class I diversity. The diversity at the MHC Class I locus in the Lesser Sundan subspecies contrasts sharply with the lack of diversity in previously examined neutral loci, and may thus be a result of selection acting to maintain polymorphism. Given uncertainty in historical population demography, however, it is difficult to rule out neutral processes in maintaining the observed diversity. The surveyed populations also differ in MHC Class I allele frequencies, and future studies are needed to assess whether these changes result in functional immune differences

    Genotyping of black grouse MHC class II B using reference Strand-Mediated Conformational Analysis (RSCA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Major Histocompatibility Complex (MHC) is a cluster of genes involved in the vertebrate immune system and includes loci with an extraordinary number of alleles. Due to the complex evolution of MHC genes, alleles from different loci within the same MHC class can be very similar and therefore difficult to assign to separate loci. Consequently, single locus amplification of MHC genes is hard to carry out in species with recently duplicated genes in the same MHC class, and multiple MHC loci have to be genotyped simultaneously. Since amplified alleles have the same length, accurate genotyping is difficult. Reference Strand-Mediated Conformational Analysis (RSCA), which is increasingly used in studies of natural populations with multiple MHC genes, is a genotyping method capable to provide high resolution and accuracy in such cases.</p> <p>Findings</p> <p>We adapted the RSCA method to genotype multiple MHC class II B (BLB) genes in black grouse (<it>Tetrao tetrix</it>), a non-model galliform bird species, using a 96-Capillary Array Electrophoresis, the MegaBACE™ 1000 DNA Analysing System (GE Healthcare). In this study we used fluorescently labelled reference strands from both black grouse and hazel grouse and observed good agreement between RSCA and cloning/sequencing since 71 alleles were observed by cloning/sequencing and 76 alleles by RSCA among the 24 individuals included in the comparison. At the individual level however, there was a trend towards more alleles scored with RSCA (1-6 per individual) than cloning/sequencing (1-4 per individual). In 63% of the pair-wise comparison, the identical allele was scored in RSCA as in cloning/sequencing. Nine out of 24 individuals had the same number of alleles in RSCA as in cloning/sequencing. Our RSCA protocol allows a faster RSCA genotyping than presented in many other RSCA studies.</p> <p>Conclusions</p> <p>In this study, we have developed the RSCA typing method further to work on a 96-Capillary Array Electrophoresis (MegaBACE™ 1000). Our RSCA protocol can be applied to fast and reliable screening of MHC class II B diversity of black grouse populations. This will facilitate future large-scale population studies of black grouse and other galliformes species with multiple inseparable MHC loci.</p

    Small duct primary sclerosing cholangitis without inflammatory bowel disease is genetically different from large duct disease.

    No full text
    BACKGROUND and AIMS: Small duct primary sclerosing cholangitis (PSC) is phenotypically a mild version of large duct PSC, but it is unknown whether these phenotypes share aetiology. We aimed to characterize their relationship by investigating genetic associations in the human leucocyte antigen (HLA) complex, which represent the strongest genetic risk factors in large duct PSC. METHODS: Four classical HLA loci (HLA-A, HLA-B, HLA-C and HLA-DRB1) were genotyped in 87 small duct PSC patients, 485 large duct PSC patients and 1117 controls across three geographical regions. RESULTS: HLA-DRB1*13:01 (OR = 2.0, 95% CI 1.2-3.4, P = 0.01) and HLA-B*08 (OR = 1.6, 95% CI 1.1-2.4, P = 0.02) were significantly associated with small duct PSC compared with healthy controls. Based on the observed frequency of HLA-B*08 in small duct PSC, the strongest risk factor in large duct PSC, an estimated 32% (95% CI 4-65%) of this population can be hypothesized to represent early stages or mild variants of large duct PSC. This subgroup may be constituted by small duct PSC patients with inflammatory bowel disease (IBD), which greatly resembled large duct PSC in its HLA association. In contrast, small duct PSC without IBD was only associated with HLA-DRB1*13:01(P = 0.03) and was otherwise distinctly dissimilar from large duct PSC. CONCLUSIONS: Small duct PSC with IBD resembles large duct PSC in its HLA association and may represent early stages or mild variants of large duct disease. Different HLA associations in small duct PSC without IBD could indicate that this subgroup is a different entity. HLA-DRB1*13:01 may represent a specific risk factor for inflammatory bile duct disease
    corecore