149 research outputs found

    The effects of salinity and temperature on the development and survival of fish parasites

    Get PDF
    In brackish water the variety of marine and freshwater parasite species is considerably reduced. The distribution in brackish water of most marine endoparasites is restricted by the salinity tolerance of their hosts, most of the parasite species are more tolerant than their hosts. The influence of salinity and temperature on nine species has been examined; first stage larvae of Contracaecum aduncum develop in 0-32‰ salinity; Cryptocotyle lingua proved to be infective at salinities down to 4‰. The greatest resistance was found in Anisakis larvae from herring Clupea harengus, which survived for more than half a year. Parasites in the fish intestines appear to be unaffected by changing water salinities, as the osmolarity in the intestines stays nearly constant. Marine ectoparasites (Acanthochondria depressa, Lepeophtheirus pectoralis) survive about three times longer than freshwater species (Piscicola geometra, Argulus foliaceus) when salinity is 16‰. High temperature increases the effects of adverse salinities on parasites. There is evidence that none of these ecto-parasitic species can develop within the range of 7-20‰ salinity

    Innate Sensing of HIV-Infected Cells

    Get PDF
    Cell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions. There are target cell-type differences in the recognition of infected lymphocytes. In primary pDCs and pDC-like cells, recognition occurs in large part through TLR7, as demonstrated by the use of inhibitors and by TLR7 silencing. Donor cells expressing replication-defective viruses, carrying mutated reverse transcriptase, integrase or nucleocapsid proteins induced IFN production by target cells as potently as wild-type virus. In contrast, Env-deleted or fusion defective HIV-1 mutants were less efficient, suggesting that in addition to TLR7, cytoplasmic cellular sensors may also mediate sensing of infected cells. Furthermore, in a model of TLR7-negative cells, we demonstrate that the IRF3 pathway, through a process requiring access of incoming viral material to the cytoplasm, allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs through both endosomal and cytoplasmic pathways. Characterization of the mechanisms of innate recognition of HIV-infected cells allows a better understanding of the pathogenic and exacerbated immunologic events associated with HIV infection

    Inheritance of mitochondrial DNA in the rotifer Brachionus plicatilis

    Get PDF
    By crossing Brachionus plicatilis s.s. NH1L strain and German strain, we obtained two types of hybrids, NH1L female × German male designated as NXG and German female × NH1L male designated as GXN. To confirm the crossing of the two hybrid strains at the genetic level, random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) analysis using 10 kinds of primers (10 and 12 mers) was carried out. Some amplified DNA fragments from RAPD of the hybrid strain showed mixed patterns of both parental strains, thus confirming that both hybrids were crossbreeds of the NH1L and German strains. Using these hybrids, we investigated the mode of mitochondrial inheritance in B. plicatilis. Full length mtDNA of the four strains was amplified by PCR, and digested with restriction enzymes to obtain restriction fragment length polymorphism (RFLP) patterns. Both hybrid strains had the same RFLP patterns as their female parents. This result shows that mitochondrial inheritance in rotifers is maternal

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision

    Immunological control of herpes simplex virus infections

    Full text link

    Buchbesprechungen

    No full text
    corecore