32 research outputs found

    Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism

    Get PDF
    The sterol-regulatory element binding proteins (SREBP) are central transcriptional regulators of lipid metabolism. Using haploid genetic screens we identify the SREBPRegulating Gene (SPRING/C12ORF49) as a determinant of the SREBP pathway. SPRING is a glycosylated Golgi-resident membrane protein and its ablation in Hap1 cells, Hepa1-6 hepatoma cells, and primary murine hepatocytes reduces SREBP signaling. In mice, Spring deletion is embryonic lethal yet silencing of hepatic Spring expression also attenuates the SREBP response. Mechanistically, attenuated SREBP signaling in SPRING(KO) cells results from reduced SREBP cleavage-activating protein (SCAP) and its mislocalization to the Golgi irrespective of the cellular sterol status. Consistent with limited functional SCAP in SPRING(KO) cells, reintroducing SCAP restores SREBP-dependent signaling and function. Moreover, in line with the role of SREBP in tumor growth, a wide range of tumor cell lines display dependency on SPRING expression. In conclusion, we identify SPRING as a previously unrecognized modulator of SREBP signaling

    Голодомор 1932 –– 1933 рр. в Україні як геноцид

    Get PDF
    Given its fundamental role in development and cancer, the Wnt-beta-catenin signaling pathway is tightly controlled at multiple levels. RING finger protein 43 (RNF43) is an E3 ubiquitin ligase originally found in stem cells and proposed to inhibit Wnt signaling by interacting with the Wnt receptors of the Frizzled family. We detected endogenous RNF43 in the nucleus of human intestinal crypt and colon cancer cells. We found that RNF43 physically interacted with T cell factor 4 (TCF4) in cells and tethered TCF4 to the nuclear membrane, thus silencing TCF4 transcriptional activity even in the presence of constitutively active mutants of beta-catenin. This inhibitory mechanism was disrupted by the expression of RNF43 bearing mutations found in human gastrointestinal tumors, and transactivation of the Wnt pathway was observed in various cells and in Xenopus embryos when the RING domain of RNF43 was mutated. Our findings indicate that RNF43 inhibits the Wnt pathway downstream of oncogenic mutations that activate the pathway. Mimicking or enhancing this inhibitory activity of RNF43 may be useful to treat cancers arising from aberrant activation of the Wnt pathwa

    The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane

    No full text
    Given its fundamental role in development and cancer, the Wnt-β-catenin signaling pathway is tightly controlled at multiple levels. RING finger protein 43 (RNF43) is an E3 ubiquitin ligase originally found in stem cells and proposed to inhibit Wnt signaling by interacting with the Wnt receptors of the Frizzled family. We detected endogenous RNF43 in the nucleus of human intestinal crypt and colon cancer cells. We found that RNF43 physically interacted with T cell factor 4 (TCF4) in cells and tethered TCF4 to the nuclear membrane, thus silencing TCF4 transcriptional activity even in the presence of constitutively activemutants of β-catenin. This inhibitorymechanismwas disrupted by the expression ofRNF43 bearing mutations found in human gastrointestinal tumors, and transactivation of theWnt pathway was observed in various cells and in Xenopus embryos when the RING domain of RNF43 was mutated. Our findings indicate thatRNF43 inhibits theWnt pathway downstreamof oncogenicmutations that activate the pathway. Mimicking or enhancing this inhibitory activity of RNF43 may be useful to treat cancers arising from aberrant activation of the Wnt pathway.This work was supported by a grant from Deutsche Forschungsgemeinschaft (GE 2042/2-1) to M. Gerhard.Peer Reviewe

    Assaying Low-Density-Lipoprotein (LDL) Uptake into Cells

    No full text
    Determination of LDL particle uptake into cells is a valuable technique in the field of cholesterol metabolism. This allows assessment of LDL uptake capacity in different adherent and non-adherent cells types, as well as the effect of cellular, genetic, or pharmacological perturbations on this process. Here, we detail a general procedure that describes the production of fluorescently-labeled LDL particles and quantitative and non-quantitative assays for determining cellular LDL uptak

    Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease

    No full text
    Scope: The mechanisms underlying the deleterious effects of trans fatty acids on plasma cholesterol and non-alcoholic fatty liver disease (NAFLD) are unclear. Here, the aim is to investigate the molecular mechanisms of action of industrial trans fatty acids. Methods and results: Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated, or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells shows that elaidate but not oleate or palmitate induces expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate is mediated by increased sterol regulatory element-binding protein 2 (SREBP2) activity and is dependent on SREBP cleavage–activating protein (SCAP), yet independent of liver-X receptor and ubiquitin regulatory X domain-containing protein 8. Elaidate decreases intracellular free cholesterol levels and represses the anticholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increases the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, alanine aminotransferase activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. Conclusion: Elaidate induces cholesterogenesis in vitro by activating the SCAP–SREBP2 axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids

    Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease

    No full text
    Scope: The mechanisms underlying the deleterious effects of trans fatty acids on plasma cholesterol and non-alcoholic fatty liver disease (NAFLD) are unclear. Here, the aim is to investigate the molecular mechanisms of action of industrial trans fatty acids. Methods and results: Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated, or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells shows that elaidate but not oleate or palmitate induces expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate is mediated by increased sterol regulatory element-binding protein 2 (SREBP2) activity and is dependent on SREBP cleavage–activating protein (SCAP), yet independent of liver-X receptor and ubiquitin regulatory X domain-containing protein 8. Elaidate decreases intracellular free cholesterol levels and represses the anticholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increases the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, alanine aminotransferase activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. Conclusion: Elaidate induces cholesterogenesis in vitro by activating the SCAP–SREBP2 axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.</p

    Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis

    No full text
    Background and aims: Cholesterol is an essential lipid for cellular function and membrane integrity, and hence its cellular levels and distribution must be tightly regulated. Biosynthesis of cholesterol is ramped when its cellular levels are low. Herein, the ER-resident and rate-limiting enzymes 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and squalene monooxygenase (SQLE) play a prominent role. We have recently reported that MARCH6, an E3 ubiquitin ligase, specifically promotes cholesterol-stimulated ubiquitylation and subsequent proteasomal degradation of SQLE, but not of HMGCR. To further delineate how post-translational regulation of SQLE and HMGCR is differentially achieved, we hypothesized that their sterol-dependent degradation machinery makes use of distinct E2 ubiquitin conjugating enzymes. Methods: To study this possibility, we therefore used a CRISPR/Cas9-based approach to screen for ER-associated degradation (ERAD)-associated E2 enzymes that are essential for MARCH6-dependent degradation of SQLE. Results: We report here the identification of UBE2J2 as the primary E2 ubiquitin conjugating enzyme essential for this process in mammalian cells, in contrast to UBE2G2, which is essential for sterol-stimulated degradation of HMGCR. We demonstrate that ablating UBE2J2 disturbs cholesterol-accelerated SQLE degradation in multiple human cell types, including cells of hepatic origin, and that the ability of UBE2J2 to support SQLE degradation critically depends on its enzymatic activity. Conclusions: Our findings establish UBE2J2 as an important partner of MARCH6 in cholesterol-stimulated degradation of SQLE, thereby contributing to the complex regulation of cellular cholesterol homeostasis

    FBXW7 regulates endothelial barrier function by suppression of the cholesterol synthesis pathway and prenylation of RhoB

    No full text
    Rho GTPases control both the actin cytoskeleton and adherens junction stability and are recognized as essential regulators of endothelial barrier function. They act as molecular switches and are primarily regulated by the exchange of GDP and GTP. However, posttranslational modifications such as phosphorylation, prenylation, and ubiquitination can additionally alter their localization, stability, and activity. F-box proteins are involved in the recognition of substrate proteins predestined for ubiquitination and subsequent degradation. Given the importance of ubiquitination, we studied the effect of the loss of 62 members of the F-box protein family on endothelial barrier function in human umbilical vein endothelial cells. Endothelial barrier function was quantified by electrical cell impedance sensing and macromolecule passage assay. Our RNA interference-based screen identified FBXW7 as a key regulator of endothelial barrier function. Mechanistically, loss of FBXW7 induced the accumulation of the RhoB GTPase in endothelial cells, resulting in their increased contractility and permeability. FBXW7 knockdown induced activation of the cholesterol biosynthesis pathway and changed the prenylation of RhoB. This effect was reversed by farnesyl transferase inhibitors and by the addition of geranylgeranyl pyrophosphate. In summary, this study identifies FBXW7 as a novel regulator of endothelial barrier function in vitro. Loss of FBXW7 indirectly modulates RhoB activity via alteration of the cholesterol biosynthesis pathway and, consequently, of the prenylation status and activity of RhoB, resulting in increased contractility and disruption of the endothelial barrier

    The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway

    No full text
    The mevalonate pathway is used by cells to produce sterol and nonsterol metabolites and is subject to tight metabolic regulation. We recently reported that squalene monooxygenase (SM), an enzyme controlling a rate-limiting step in cholesterol biosynthesis, is subject to cholesterol-dependent proteasomal degradation. However, the E3-ubiquitin (E3) ligase mediating this effect was not established. Using a candidate approach, we identify the E3 ligase membrane-associated RING finger 6 (MARCH6, also known as TEB4) as the ligase controlling degradation of SM. We find that MARCH6 and SM physically interact, and consistent with MARCH6 acting as an E3 ligase, its overexpression reduces SM abundance in a RING-dependent manner. Reciprocally, knockdown of MARCH6 increases the level of SM protein and prevents its cholesterol-regulated degradation. Additionally, this increases cell-associated SM activity but is unexpectedly accompanied by increased flux upstream of SM. Prompted by this observation, we found that knockdown of MARCH6 also controls the level of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) in hepatocytes and model cell lines. In conclusion, MARCH6 controls abundance of both SM and HMGCR, establishing it as a major regulator of flux through the cholesterol synthesis pathwa

    Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene

    No full text
    Cellular cholesterol metabolism is subject to tight regulation to maintain adequate levels of this central lipid molecule. Herein, the sterol-responsive Liver X Receptors (LXRs) play an important role owing to their ability to reduce cellular cholesterol load. In this context, identifying the full set of LXR-regulated genes will contribute to our understanding of their role in cholesterol metabolism. Using global transcriptional analysis we report here the identification of RNF145 as an LXR-regulated target gene. We demonstrate that RNF145 is regulated by LXRs in both human and mouse primary cells and cell lines, and in vivo in mice. Regulation of RNF145 by LXR depends on a functional LXR-element in its proximal promotor. Consistent with LXR-dependent regulation of Rnf145 we show that regulation is lost in macrophages and fibroblasts from Lxrαβ(-/-) mice, and also in vivo in livers of Lxrα(-/-) mice treated with the LXR synthetic ligand T0901317. RNF145 is closely related to RNF139/TRC8, an E3 ligase implicated in control of SREBP processing. However, silencing of RNF145 in HepG2 or HeLa cells does not impair SREBP1/2 processing and sterol-responsive gene expression in these cells. Similar to TRC8, we demonstrate that RNF145 is localized to the ER and that it possesses intrinsic E3 ubiquitin ligase activity. In summary, we report the identification of RNF145 as an ER-resident E3 ubiquitin ligase that is transcriptionally controlled by LX
    corecore