14 research outputs found

    Caries is Associated with Asthma and Epilepsy

    Get PDF
    OBJECTIVES: There is evidence of association between systemic diseases and oral conditions, although it is not clear if these are direct or mediated by underlying factors such as health behaviors. The aim of this work was to evaluate whether self-reported systemic diseases were associated with caries experience. METHODS: Medical history data and caries experience (DMFT and DMFS; Decayed, Missing due to caries, Filled Teeth/Surface) were obtained from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository. Information on 318 subjects (175 females and 143 males) was evaluated. Regression analysis was used to test for association between caries experience and disease status. RESULTS: The stronger associations were found between caries experience and asthma and epilepsy. With respect to asthma, DMFT above 15 (R(2) = 0.04) and DMFS above 50 (R(2) = 0.02) were associated. After controlling for gender differences in asthma, the associations remained strong (R(2) = 0.05 for both DMFT and DMFS). For epilepsy, DMFT above 15 (R(2) = 0.18) and DMFS above 50 (R(2) = 0.14) were associated. CONCLUSIONS: Asthma and epilepsy are associated with higher caries experience

    Aquaporin 5 Interacts with Fluoride and Possibly Protects Against Caries

    Get PDF
    Aquaporins (AQP) are water channel proteins and the genes coding for AQP2, AQP5, and AQP6 are clustered in 12q13. Since AQP5 is expressed in serous acinar cells of salivary glands, we investigated its involvement in caries. DNA samples from 1,383 individuals from six groups were studied. Genotypes of eight single nucleotide polymorphisms covering the aquaporin locus were tested for association with caries experience. Interaction with genes involved in enamel formation was tested. The association between enamel microhardness at baseline, after creation of artificial caries lesion, and after exposure to fluoride and the genetic markers in AQP5 was tested. Finally, AQP5 expression in human whole saliva, after exposure to fluoride in a mammary gland cell line, which is known to express AQP5, and in Wistar rats was also verified. Nominal associations were found between caries experience and markers in the AQP5 locus. Since these associations suggested that AQP5 may be inhibited by levels of fluoride in the drinking water that cause fluorosis, we showed that fluoride levels above optimal levels change AQP5 expression in humans, cell lines, and rats. We have shown that AQP5 is involved in the pathogenesis of caries and likely interact with fluoride.Fil: Anjomshoaa, Ida. University of Pittsburgh; Estados UnidosFil: Briseño Ruiz, Jessica. University of Pittsburgh; Estados UnidosFil: Deeley, Kathleen. University of Pittsburgh; Estados UnidosFil: Poletta, Fernando AdriĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones MĂ©dicas e Investigaciones ClĂ­nicas "Norberto Quirno". CEMIC-CONICET.; ArgentinaFil: Mereb, Juan C.. Provincia de RĂ­o Negro. Ministerio de Salud. Hospital de Área El BolsĂłn ; ArgentinaFil: Leite, Aline L.. Universidade de Sao Paulo; BrasilFil: Barreta, Priscila A. T.. Universidade de Sao Paulo; BrasilFil: Silva, Thelma L.. Universidade de Sao Paulo; BrasilFil: Dizak, Piper. University of Pittsburgh; Estados UnidosFil: Ruff, Timothy. University of Pittsburgh; Estados UnidosFil: Patir, Asli. Ä°stanbul Medipol Üniversitesi; TurquĂ­aFil: Koruyucu, Mine. Ä°stanbul Üniversitesi; TurquĂ­aFil: Abbasoğlu, Zerrin. Yeditepe Üniversitesi; TurquĂ­aFil: Casado, Priscila L.. Universidade Federal Fluminense; BrasilFil: Brown, Andrew. University of Pittsburgh; Estados UnidosFil: Zaky, Samer H.. University of Pittsburgh; Estados UnidosFil: Bayram, Merve. Ä°stanbul Medipol Üniversitesi; TurquĂ­aFil: KĂŒchler, Erika C.. University of Pittsburgh; Estados UnidosFil: Cooper, Margaret E.. University of Pittsburgh; Estados UnidosFil: Liu, Kai. University of Pittsburgh; Estados UnidosFil: Marazita, Mary L.. University of Pittsburgh; Estados UnidosFil: Tanboğa, Ä°lknur. Marmara Üniversitesi; TurquĂ­aFil: Granjeiro, JosĂ© M.. Universidade Federal Fluminense; Brasil. Instituto Nacional de Metrologia, Qualidade e Tecnologia; BrasilFil: Seymen, Figen. Ä°stanbul Üniversitesi; TurquĂ­aFil: Castilla, Eduardo Enrique. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones MĂ©dicas e Investigaciones ClĂ­nicas "Norberto Quirno". CEMIC-CONICET.; Argentina. FundaciĂłn Oswaldo Cruz; BrasilFil: Orioli, IĂȘda M.. Universidade Federal do Rio de Janeiro; BrasilFil: Sfeir, Charles. University of Pittsburgh; Estados UnidosFil: Owyang, Hongjiao. Marmara Üniversitesi; TurquĂ­aFil: Rabelo Buzalaf, Marilia Afonso. Universidade de Sao Paulo; BrasilFil: Vieira, Alexandre R.. University of Pittsburgh; Estados Unido

    Genome-wide association Scan of dental caries in the permanent dentition

    Get PDF
    Background: Over 90% of adults aged 20 years or older with permanent teeth have suffered from dental caries leading to pain, infection, or even tooth loss. Although caries prevalence has decreased over the past decade, there are still about 23% of dentate adults who have untreated carious lesions in the US. Dental caries is a complex disorder affected by both individual susceptibility and environmental factors. Approximately 35-55% of caries phenotypic variation in the permanent dentition is attributable to genes, though few specific caries genes have been identified. Therefore, we conducted the first genome-wide association study (GWAS) to identify genes affecting susceptibility to caries in adults. Methods: Five independent cohorts were included in this study, totaling more than 7000 participants. For each participant, dental caries was assessed and genetic markers (single nucleotide polymorphisms, SNPs) were genotyped or imputed across the entire genome. Due to the heterogeneity among the five cohorts regarding age, genotyping platform, quality of dental caries assessment, and study design, we first conducted genome-wide association (GWA) analyses on each of the five independent cohorts separately. We then performed three meta-analyses to combine results for: (i) the comparatively younger, Appalachian cohorts (N = 1483) with well-assessed caries phenotype, (ii) the comparatively older, non-Appalachian cohorts (N = 5960) with inferior caries phenotypes, and (iii) all five cohorts (N = 7443). Top ranking genetic loci within and across meta-analyses were scrutinized for biologically plausible roles on caries. Results: Different sets of genes were nominated across the three meta-analyses, especially between the younger and older age cohorts. In general, we identified several suggestive loci (P-value ≀ 10E-05) within or near genes with plausible biological roles for dental caries, including RPS6KA2 and PTK2B, involved in p38-depenedent MAPK signaling, and RHOU and FZD1, involved in the Wnt signaling cascade. Both of these pathways have been implicated in dental caries. ADMTS3 and ISL1 are involved in tooth development, and TLR2 is involved in immune response to oral pathogens. Conclusions: As the first GWAS for dental caries in adults, this study nominated several novel caries genes for future study, which may lead to better understanding of cariogenesis, and ultimately, to improved disease predictions, prevention, and/or treatment

    Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    Get PDF
    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults

    Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    Get PDF
    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults

    Linkage disequilibrium plot illustrating the aquaporin locus on 12q13 region investigated.

    No full text
    <p>The single nucleotide polymorphisms are located in their approximate geographic positions in the chromosome and are distributed among the three genes. The relationship between two SNPs is represented by the intersection between the two squares and may present different colors (or color intensity) based on the value obtained for each pair. Red indicates D’ = 1 and LOD ≄ 2. Blue indicates D’ = 1 and LOD < 2. Shades of red/pink indicate D’< 1 and LOD ≄ 2. White indicates D’< 1 and LOD < 2. Markers selected for this studied include rs457487, rs467323, rs10875989, rs2878771, rs3759129, rs296759, rs296763, and rs1996315.</p
    corecore