9 research outputs found

    The phenotypic presentation of adult individuals with SLC6A1-related neurodevelopmental disorders

    Get PDF
    Epilepsy; Intellectual disability; Neurodevelopmental disordersEpilepsia; Discapacidad intelectual; Trastornos del neurodesarrolloEpilĂšpsia; Discapacitat intel·lectual; Trastorns del neurodesenvolupamentIntroduction: SLC6A1 is one of the most common monogenic causes of epilepsy and is a well-established cause of neurodevelopmental disorders. SLC6A1-neurodevelopmental disorders have a consistent phenotype of mild to severe intellectual disability (ID), epilepsy, language delay and behavioral disorders. This phenotypic description is mainly based on knowledge from the pediatric population. Method: Here, we sought to describe patients with SLC6A1 variants and age above 18 years through the ascertainment of published and unpublished patients. Unpublished patients were ascertained through international collaborations, while previously published patients were collected through a literature search. Results: A total of 15 adult patients with SLC6A1 variants were included. 9/13 patients had moderate to severe ID (data not available in two). Epilepsy was prevalent (11/15) with seizure types such as absence, myoclonic, atonic, and tonic–clonic seizures. Epilepsy was refractory in 7/11, while four patients were seizure free with lamotrigine, valproate, or lamotrigine in combination with valproate. Language development was severely impaired in five patients. Behavioral disorders were reported in and mainly consisted of autism spectrum disorders and aggressive behavior. Schizophrenia was not reported in any of the patients. Discussion: The phenotype displayed in the adult patients presented here resembled that of the pediatric cohort with ID, epilepsy, and behavioral disturbances, indicating that the phenotype of SLC6A1-NDD is consistent over time. Seizures were refractory in >60% of the patients with epilepsy, indicating the lack of targeted treatment in SLC6A1-NDDs. With increased focus on repurposing drugs and on the development of new treatments, hope is that the outlook reflected here will change over time. ID appeared to be more severe in the adult patients, albeit this might reflect a recruitment bias, where only patients seen in specialized centers were included or it might be a feature of the natural history of SLC6A1-NDDs. This issue warrants to be explored in further studies in larger cohorts

    The phenotypic presentation of adult individuals with SLC6A1-related neurodevelopmental disorders

    Get PDF
    IntroductionSLC6A1 is one of the most common monogenic causes of epilepsy and is a well-established cause of neurodevelopmental disorders. SLC6A1-neurodevelopmental disorders have a consistent phenotype of mild to severe intellectual disability (ID), epilepsy, language delay and behavioral disorders. This phenotypic description is mainly based on knowledge from the pediatric population.MethodHere, we sought to describe patients with SLC6A1 variants and age above 18 years through the ascertainment of published and unpublished patients. Unpublished patients were ascertained through international collaborations, while previously published patients were collected through a literature search.ResultsA total of 15 adult patients with SLC6A1 variants were included. 9/13 patients had moderate to severe ID (data not available in two). Epilepsy was prevalent (11/15) with seizure types such as absence, myoclonic, atonic, and tonic–clonic seizures. Epilepsy was refractory in 7/11, while four patients were seizure free with lamotrigine, valproate, or lamotrigine in combination with valproate. Language development was severely impaired in five patients. Behavioral disorders were reported in and mainly consisted of autism spectrum disorders and aggressive behavior. Schizophrenia was not reported in any of the patients.DiscussionThe phenotype displayed in the adult patients presented here resembled that of the pediatric cohort with ID, epilepsy, and behavioral disturbances, indicating that the phenotype of SLC6A1-NDD is consistent over time. Seizures were refractory in >60% of the patients with epilepsy, indicating the lack of targeted treatment in SLC6A1-NDDs. With increased focus on repurposing drugs and on the development of new treatments, hope is that the outlook reflected here will change over time. ID appeared to be more severe in the adult patients, albeit this might reflect a recruitment bias, where only patients seen in specialized centers were included or it might be a feature of the natural history of SLC6A1-NDDs. This issue warrants to be explored in further studies in larger cohorts

    Functional and structural analyses of novel Smith-Kingsmore Syndrome-Associated MTOR variants reveal potential new mechanisms and predictors of pathogenicity

    No full text
    Smith-Kingsmore syndrome (SKS) is a rare neurodevelopmental disorder characterized by macrocephaly/megalencephaly, developmental delay, intellectual disability, hypotonia, and seizures. It is caused by dominant missense mutations in MTOR. The pathogenicity of novel variants in MTOR in patients with neurodevelopmental disorders can be difficult to determine and the mechanism by which variants cause disease remains poorly understood. We report 7 patients with SKS with 4 novel MTOR variants and describe their phenotypes. We perform in vitro functional analyses to confirm MTOR activation and interrogate disease mechanisms. We complete structural analyses to understand the 3D properties of pathogenic variants. We examine the accuracy of relative accessible surface area, a quantitative measure of amino acid side-chain accessibility, as a predictor of MTOR variant pathogenicity. We describe novel clinical features of patients with SKS. We confirm MTOR Complex 1 activation and identify MTOR Complex 2 activation as a new potential mechanism of disease in SKS. We find that pathogenic MTOR variants disproportionately cluster in hotspots in the core of the protein, where they disrupt alpha helix packing due to the insertion of bulky amino acid side chains. We find that relative accessible surface area is significantly lower for SKS-associated variants compared to benign variants. We expand the phenotype of SKS and demonstrate that additional pathways of activation may contribute to disease. Incorporating 3D properties of MTOR variants may help in pathogenicity classification. We hope these findings may contribute to improving the precision of care and therapeutic development for individuals with SKS

    Disruption of HNF1α binding site causes inherited severe unconjugated hyperbilirubinemia

    No full text
    Crigler-Najjar syndrome presents as severe unconjugated hyperbilirubinemia and is characteristically caused by a mutation in the UGT1A1 gene, encoding the enzyme responsible for bilirubin glucuronidation. Here we present a patient with Crigler-Najjar syndrome with a completely normal UGT1A1 coding region. Instead, a homozygous 3 nucleotide insertion in the UGT1A1 promoter was identified that interrupts the HNF1α binding site. This mutation results in almost complete abolishment of UGT1A1 promoter activity and prevents the induction of UGT1A1 expression by the liver nuclear receptors CAR and PXR, explaining the lack of a phenobarbital response in this patient. Although animal studies have revealed the importance of HNF1α for normal liver function, this case provides the first clinical proof that mutations in its binding site indeed result in severe liver pathology stressing the importance of promoter sequence analysi

    Functional and structural analyses of novel Smith-Kingsmore Syndrome-Associated MTOR variants reveal potential new mechanisms and predictors of pathogenicity

    Get PDF
    Smith-Kingsmore syndrome (SKS) is a rare neurodevelopmental disorder characterized by macrocephaly/megalencephaly, developmental delay, intellectual disability, hypotonia, and seizures. It is caused by dominant missense mutations in MTOR. The pathogenicity of novel variants in MTOR in patients with neurodevelopmental disorders can be difficult to determine and the mechanism by which variants cause disease remains poorly understood. We report 7 patients with SKS with 4 novel MTOR variants and describe their phenotypes. We perform in vitro functional analyses to confirm MTOR activation and interrogate disease mechanisms. We complete structural analyses to understand the 3D properties of pathogenic variants. We examine the accuracy of relative accessible surface area, a quantitative measure of amino acid side-chain accessibility, as a predictor of MTOR variant pathogenicity. We describe novel clinical features of patients with SKS. We confirm MTOR Complex 1 activation and identify MTOR Complex 2 activation as a new potential mechanism of disease in SKS. We find that pathogenic MTOR variants disproportionately cluster in hotspots in the core of the protein, where they disrupt alpha helix packing due to the insertion of bulky amino acid side chains. We find that relative accessible surface area is significantly lower for SKS-associated variants compared to benign variants. We expand the phenotype of SKS and demonstrate that additional pathways of activation may contribute to disease. Incorporating 3D properties of MTOR variants may help in pathogenicity classification. We hope these findings may contribute to improving the precision of care and therapeutic development for individuals with SKS. </p

    Effects of childhood multidisciplinary care and growth hormone treatment on health problems in adults with prader-willi syndrome

    Get PDF
    Prader-Willi syndrome (PWS) is a complex hypothalamic disorder. Features of PWS include hyperphagia, hypotonia, intellectual disability, and pituitary hormone deficiencies. The combination of growth hormone treatment and multidisciplinary care (GHMDc) has greatly improved the health of children with PWS. Little is known about the effects of childhood GHMDc on health outcomes in adulthood. We retrospectively collected clinical data of 109 adults with PWS. Thirty-nine had received GHMDc during childhood and adolescence (GHMDc+ group) and sixty-three had never received growth hormone treatment (GHt) nor multidisciplinary care (GHMDc− group). Our systematic screening revealed fewer undetected health problems in the GHMDc+ group (10%) than in the GHMDc− group (84%). All health problems revealed in the GHMDc+ group had developed between the last visit to the paediatric and the first visit to the adult clinic and/or did not require treatment. Mean BMI and the prevalence of diabetes mellitus type 2 were significantly lower in the GHMDc+ group compared to the GHMDc− group. As all patients who received GHt were treated in a multidisciplinary setting, it is unknown which effects are the result of GHt and which are the result of multidisciplinary care. However, our data clearly show that the combination of both has beneficial effects. Therefore, we recommend continuing GHMDc after patients with PWS have reached adult age

    Effects of childhood multidisciplinary care and growth hormone treatment on health problems in adults with prader-willi syndrome

    No full text
    Prader-Willi syndrome (PWS) is a complex hypothalamic disorder. Features of PWS include hyperphagia, hypotonia, intellectual disability, and pituitary hormone deficiencies. The combination of growth hormone treatment and multidisciplinary care (GHMDc) has greatly improved the health of children with PWS. Little is known about the effects of childhood GHMDc on health outcomes in adulthood. We retrospectively collected clinical data of 109 adults with PWS. Thirty-nine had received GHMDc during childhood and adolescence (GHMDc+ group) and sixty-three had never received growth hormone treatment (GHt) nor multidisciplinary care (GHMDc− group). Our systematic screening revealed fewer undetected health problems in the GHMDc+ group (10%) than in the GHMDc− group (84%). All health problems revealed in the GHMDc+ group had developed between the last visit to the paediatric and the first visit to the adult clinic and/or did not require treatment. Mean BMI and the prevalence of diabetes mellitus type 2 were significantly lower in the GHMDc+ group compared to the GHMDc− group. As all patients who received GHt were treated in a multidisciplinary setting, it is unknown which effects are the result of GHt and which are the result of multidisciplinary care. However, our data clearly show that the combination of both has beneficial effects. Therefore, we recommend continuing GHMDc after patients with PWS have reached adult age.</p

    What every internist-endocrinologist should know about rare genetic syndromes in order to prevent needless diagnostics, missed diagnoses and medical complications: Five years of ‘internal medicine for rare genetic syndromes’

    Get PDF
    Patients with complex rare genetic syndromes (CRGS) have combined medical problems affecting multiple organ systems. Pediatric multidisciplinary (MD) care has improved life expectancy, however, transfer to internal medicine is hindered by the lack of adequate MD care for adults. We have launched an MD outpatient clinic providing syndrome-specific care for adults with CRGS, which, to our knowledge, is the first one worldwide in the field of internal medicine. Between 2015 and 2020, we have treated 720 adults with over 60 syndromes. Eighty-nine percent of the syndromes were associated with endocrine problems. We describe case series of missed diagnoses and patients who had undergone extensive diagnostic testing for symptoms that could actually be explained by their syndrome. Based on our experiences and review of the literature, we provide an algorithm for the clinical approach of health problems in CRGS adults. We conclude that missed diagnoses and needless invasive tests seem common in CRGS adults. Due to the increased life expectancy, an increasing number of patients with CRGS will transfer to adult endocrinology. Internist-endocrinologists (in training) should be aware of their special needs and medical pitfalls of CRGS will help prevent the burden of unnecessary diagnostics and under- and overtreatment

    Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction

    Get PDF
    International audienceWhereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability
    corecore