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Abstract 156 

Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they 157 

do not accurately capture genotype-phenotype correlations or disease mechanisms. We use 158 

multiple lines of independent evidence to show that different variant types in a single gene, 159 

SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical 160 

evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype 161 

relationships, associated with different pathophysiological mechanisms, established by 162 

functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in 163 

stronger chromatin binding, increased transcriptional repression and a severe phenotype. In 164 

contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical 165 

presentation. A similarly mild phenotype is observed for individuals with premature protein 166 

truncating variants that escape nonsense-mediated decay, which are transcriptionally active 167 

but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-168 

phenotype studies are essential to capture full disease complexity and to explain phenotypic 169 

variability.  170 
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Main text 171 

SATB1 encodes a dimeric/tetrameric transcription factor1 with crucial roles in 172 

development and maturation of T-cells2-4. Recently, a potential contribution of SATB1 to brain 173 

development was suggested by statistically significant enrichment of de novo variants in two 174 

large neurodevelopmental disorder (NDD) cohorts5; 6, although its functions in the central 175 

nervous system are poorly characterized. 176 

Through international collaborations7-9 conforming to local ethical guidelines and the 177 

declaration of Helsinki, we identified 42 individuals with a rare (likely) pathogenic variant in 178 

SATB1 (NM_001131010.4), a gene under constraint against loss-of-function and missense 179 

variation (pLoF: o/e=0.15 (0.08-0.29); missense: o/e=0.46 (0.41-0.52); gnomAD v2.1.1)10. 180 

Twenty-eight of the SATB1 variants occurred de novo, three were inherited from an affected 181 

parent, and five resulted from (suspected) parental mosaicism (Figure S1). Reduced 182 

penetrance is suggested by two variants inherited from unaffected parents (identified in 183 

individual 2 and 12; Table S1A), consistent with recent predictions of incomplete penetrance 184 

being more prevalent in novel NDD syndromes6. Inheritance status of the final four could not 185 

be established (Table S1A). Of note, two individuals also carried a (likely) pathogenic variant 186 

affecting other known disease genes, including NF1 (MIM #162200; individual 27) and FOXP2 187 

(MIM #602081; individual 42) which contributed to (individual 27) or explained (individual 42) 188 

the observed phenotype (Table S1A). 189 

Thirty individuals carried 15 unique SATB1 missense variants, including three recurrent 190 

variants (Figure 1A), significantly clustering in the highly homologous DNA-binding domains 191 

CUT1 and CUT2 (p=1.00e-7; Figure 2A, Figure S2)11; 12. Ten individuals carried premature 192 

protein truncating variants (PTVs; two nonsense, seven frameshift, one splice site; Table S1A, 193 

Table S2), and two individuals had a (partial) gene deletion (Figure S3). For 38 affected 194 

individuals and one mosaic parent, clinical information was available. Overall, we observed a 195 

broad phenotypic spectrum, characterized by neurodevelopmental delay (35/36, 97%), ID 196 

(28/31, 90%), muscle tone abnormalities (abnormal tone 28/37, 76%; hypotonia 28/37, 76%; 197 

spasticity 10/36, 28%), epilepsy (22/37, 61%) behavioral problems (24/34, 71%), facial 198 
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dysmorphisms (24/36, 67%; Figure 1B-1C, Figure S4A), and dental abnormalities (24/34, 71%) 199 

(Figure 1D, Table 1, Figure S4B, Table S1). Individuals with missense variants were globally 200 

more severely affected than those with PTVs: 57% of individuals with a missense variant had 201 

severe/profound ID whereas this level of ID was not observed for any individuals with PTVs. 202 

Furthermore, hypotonia, spasticity and (severe) epilepsy were more common in individuals 203 

with missense variants than in those with PTVs (92% versus 42%, 42% versus 0%, 80% versus 204 

18%, respectively) (Figure 1F, Table 1, Table S1A). To objectively quantify these observations, 205 

we divided our cohort into two variant-specific clusters (missense versus PTVs) and assessed 206 

the two groups using a Partitioning Around Medoids clustering algorithm13 on 100 features 207 

derived from standardized clinical data (Human Phenotype Ontology (HPO); Figure S5A and 208 

Suppl. JSON)14. Thirty-eight individuals were subjected to this analysis, of which 27 were 209 

classified correctly as either belonging to the PTV or missense variant group (p=0.022), 210 

confirming the existence of at least two separate clinical entities (Figure 1G, Figure S5B). 211 

Moreover, computational averaging of facial photographs15 revealed differences between the 212 

average facial gestalt for individuals with missense variants when compared to individuals with 213 

PTVs or deletions (Figure 1B-E, Figure S4, Table S1B). 214 

We performed functional analyses assessing consequences of different types of 215 

SATB1 variants for cellular localization, transcriptional activity, overall chromatin binding, and 216 

dimerization capacity. Based on protein modeling (Figure 2, Suppl. Notes), we selected five 217 

missense variants (observed in 14 individuals) in CUT1 and CUT2 affecting residues that 218 

interact with, or are close to, the DNA backbone (mosaic variant c.1220A>G; p.Glu407Gly and 219 

de novo variants c.1259A>G; p.Gln420Arg, c.1588G>A; p.Glu530Lys, c.1588G>C; 220 

p.Glu530Gln, c.1639G>A; p.Glu547Lys), as well as the only homeobox domain variant 221 

(c.2044C>G; p.Leu682Val, de novo). As controls, we selected three rare missense variants 222 

from the UK10K consortium, identified in healthy individuals with a normal IQ: c.1097C>T; 223 

p.Ser366Leu (gnomAD allele frequency 6.61e-4), c.1555G>C; p.Val519Leu (8.67e-6) and 224 

c.1717G>A; p.Ala573Thr (1.17e-4) (Figure 1A, Table S3)16. When overexpressed as YFP-225 

fusion proteins in HEK293T/17 cells, wildtype SATB1 localized to the nucleus in a granular 226 
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pattern, with an intensity profile inverse to the DNA-binding dye Hoechst 33342 (Figure 3A-B). 227 

In contrast to wildtype and UK10K control missense variants, the p.Glu407Gly, p.Gln420Arg, 228 

p.Glu530Lys/p.Glu530Gln and p.Glu547Lys variants displayed a cage-like clustered nuclear 229 

pattern, strongly co-localizing with the DNA (Figure 3A-B, Figure S6). 230 

To assess the effects of SATB1 missense variants on transrepressive activity, we used 231 

a luciferase reporter system with two previously established downstream targets of SATB1, 232 

the IL2-promoter and IgH-MAR (matrix associated region)17-19. All five functionally assessed 233 

CUT1 and CUT2 missense variants demonstrated increased transcriptional repression of the 234 

IL2-promoter, while the UK10K control variants did not differ from wildtype (Figure 3C). In 235 

assays using IgH-MAR, increased repression was seen for both CUT1 variants, and for one of 236 

the CUT2 variants (Figure 3C). The latter can be explained by previous reports that the CUT1 237 

domain is essential for binding to MARs, whereas the CUT2 domain is dispensable20; 21. Taken 238 

together, these data suggest that etiological SATB1 missense variants in CUT1 and CUT2 239 

lead to stronger binding of the transcription factor to its targets. 240 

To study whether SATB1 missense variants affect the dynamics of chromatin binding 241 

more globally, we employed fluorescent recovery after photobleaching (FRAP) assays. 242 

Consistent with the luciferase reporter assays, all CUT1 and CUT2 missense variants, but not 243 

the UK10K control variants, affected protein mobility in the nucleus. The CUT2 variant 244 

p.Gln420Arg demonstrated an increased half time, but showed a maximum recovery similar to 245 

wildtype, while the other CUT1 and CUT2 variants demonstrated both increased halftimes and 246 

reduced maximum recovery. These results suggest stabilization of SATB1 chromatin binding 247 

for all tested CUT1 and CUT2 variants (Figure 3D).  248 

In contrast to the CUT1 and CUT2 missense variants, the homeobox variant 249 

p.Leu682Val did not show functional differences from wildtype (Figure 3A-D, Figure S6), 250 

suggesting that, although it is absent from gnomAD, highly intolerant to variation and 251 

evolutionarily conserved (Figure S2, Figure S7A-B), this variant is unlikely to be pathogenic. 252 

This conclusion is further supported by the presence of a valine residue at the equivalent 253 

position in multiple homologous homeobox domains (Figure S7C). Additionally, the mild 254 
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phenotypic features in this individual (individual 42) can be explained by the fact that the 255 

individual carries an out-of-frame de novo intragenic duplication of FOXP2, known to cause 256 

NDD through haploinsufficiency22.  257 

We went on to assess the impact of the CUT1 and CUT2 missense variants 258 

(p.Glu407Gly, p.Gln420Arg, p.Glu530Lys, p.Glu547Lys) on protein interaction capacities using 259 

bioluminescence resonance energy transfer (BRET). All tested variants retained the ability to 260 

interact with wildtype SATB1 (Figure 3E), with the potential to yield dominant-negative 261 

dimers/tetramers in vivo and to disturb normal activity of the wildtype protein. 262 

The identification of SATB1 deletions suggests that haploinsufficiency is a second 263 

underlying disease mechanism. This is supported by the constraint of SATB1 against loss-of-264 

function variation, and the identification of PTV carriers that are clinically distinct from 265 

individuals with missense variants. PTVs are found throughout the locus and several are 266 

predicted to undergo NMD by in silico models of NMD efficacy (Table S4)23. In contrast to these 267 

predictions, we found that one of the PTVs, c.1228C>T; p.Arg410*, escapes NMD (Figure S8A-268 

B). However, the p.Arg410* variant would lack critical functional domains (CUT1, CUT2, 269 

homeobox) and indeed showed reduced transcriptional activity in luciferase reporter assays 270 

when compared to wildtype protein (Figure S8), consistent with the haploinsufficiency model. 271 

Four unique PTVs that we identified were located within the final exon of SATB1 (Figure 272 

1A) and predicted to escape NMD (Table S4). Following experimental validation of NMD 273 

escape (Figure 4A-B), three such variants (c.1877delC; p.Pro626Hisfs*81, c.2080C>T; 274 

p.Gln694* and c.2207delA; p.Asn736Ilefs*8) were assessed with the same functional assays 275 

that we used for missense variants. When overexpressed as YFP-fusion proteins, the tested 276 

variants showed altered subcellular localization, forming nuclear puncta or (nuclear) 277 

aggregates, different from patterns observed for missense variants (Figure 4C, Figure S9A-B). 278 

In luciferase reporter assays, the p.Pro626Hisfs*81 variant showed increased repression of 279 

both the IL2-promoter and IgH-MAR, whereas p.Gln694* only showed reduced repression of 280 

IgH-MAR (Figure 4D). The p.Asn736Ilefs*8 variant showed repression comparable to that of 281 

wildtype protein for both targets (Figure 4D). In further pursuit of pathophysiological 282 
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mechanisms, we tested protein stability and SUMOylation, as the previously described 283 

p.Lys744 SUMOylation site is missing in all assessed NMD-escaping truncated proteins 284 

(Figure 4A)24. Our observations suggest the existence of multiple SATB1 SUMOylation sites 285 

(Figure S10) and no effect of NMD-escaping variants on SUMOylation of the encoded proteins 286 

(Figure S10) nor any changes in protein stability (Figure S9C). Although functional assays with 287 

NMD-escaping PTVs hint towards additional disease mechanisms, HPO-based phenotypic 288 

analysis or qualitative evaluation could not confirm a third distinct clinical entity (p=0.932; 289 

Figure S5, Figure S11, Table S5).  290 

Our study demonstrates that while statistical analyses5; 6 can provide the first step towards 291 

identification of new NDDs, a mutation-specific functional follow-up is required to gain insight 292 

into the underlying mechanisms and to understand phenotypic differences within patient 293 

cohorts (Table S6). Multiple mechanisms and/or more complex genotype-phenotype 294 

correlations are increasingly appreciated in newly described NDDs, such as those associated 295 

with RAC1, POL2RA, KMT2E and PPP2CA25-28. Interestingly, although less often explored, 296 

such mechanistic complexity might also underlie well-known (clinically recognizable) NDDs. 297 

For instance, a CUT1 missense variant in SATB2, a paralog of SATB1 that causes Glass 298 

syndrome through haploinsufficiency (MIM #612313)29, affects protein localization and nuclear 299 

mobility in a similar manner to the corresponding SATB1 missense variants (Figure S12, Figure 300 

S13)30. Taken together, these observations suggest that mutation-specific mechanisms await 301 

discovery both for new and well-established clinical syndromes. 302 

In summary, we demonstrate that at least two different previously uncharacterized 303 

NDDs are caused by distinct classes of rare (de novo) variation at a single locus. We combined 304 

clinical investigation, in silico models and cellular assays to characterize the phenotypic 305 

consequences and functional impacts of a large patient series uncovering distinct 306 

pathophysiological mechanisms of the SATB1-associated NDDs. This level of combined 307 

analyses is recommended for known and yet undiscovered NDDs to fully understand disease 308 

etiology.  309 
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Figure legends 443 

Figure 1. Clinical evaluation of SATB1 variants in neurodevelopmental disorders. A) 444 

Schematic representation of the SATB1 protein (NM_001131010.4/NP_001124482.1), 445 

including functional domains, with truncating variants labeled in cyan, truncating variants 446 

predicted to escape NMD in orange, splice site variants in purple, missense variants in 447 

magenta, and UK10K rare control missense variants in green. Deletions are shown in dark 448 

blue below the protein schematic, above a diagram showing the exon boundaries. We obtained 449 

clinical data for all individuals depicted by a circle. B-C) Facial photographs of individuals with 450 

(partial) gene deletions and truncations (B), and of individuals with missense variants (C). All 451 

depicted individuals show facial dysmorphisms and although overlapping features are seen, 452 

no consistent facial phenotype can be observed for the group as a whole. Overlapping facial 453 

dysmorphisms include facial asymmetry, high forehead, prominent ears, straight and/or full 454 

eyebrows, puffy eyelids, downslant of palpebral fissures, low nasal bridge, full nasal tip and 455 

full nasal alae, full lips with absent cupid’s bow, prominent cupid’s bow or thin upper lip 456 

vermillion (Table S1B). Individuals with missense variants are more alike than individuals in 457 

the truncating cohorts, and we observed recognizable overlap between several individuals in 458 

the missense cohort (individual 17, 27, 31, 37, the siblings 19, 20 and 21, and to a lesser extent 459 

individual 24 and 35). A recognizable facial overlap between individuals with (partial) gene 460 

deletions and truncations could not be observed. Related individuals are marked with a blue 461 

box. D) Photographs of teeth abnormalities observed in individuals with SATB1 variants. 462 

Dental abnormalities are seen for all variant types and include widely spaced teeth, dental 463 

fragility, missing teeth, disorganized teeth implant, and enamel discoloration (Table S1B). E) 464 

Computational average of facial photographs of 16 individuals with a missense variant (left) 465 

and 8 individuals with PTVs or (partial) gene deletions (right). F) Mosaic plot presenting a 466 

selection of clinical features. G) The Partitioning Around Medoids analysis of clustered HPO-467 

standardized clinical data from 38 individuals with truncating (triangle) and missense variants 468 

(circle) shows a significant distinction between the clusters of individuals with missense 469 

variants (blue) and individuals with PTVs (red). Applying Bonferroni correction, a p-value 470 
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smaller than 0.025 was considered significant. For analyses displayed in (F) and (G), 471 

individuals with absence of any clinical data and/or low level mosaicism for the SATB1 variant 472 

were omitted (for details, see Suppl. Materials and Methods). 473 

 474 

Figure 2. 3D protein modeling of SATB1 missense variants in DNA-binding domains. A) 475 

Schematic representation of the aligned CUT1 and CUT2 DNA-binding domains. CUT1 and 476 

CUT2 domains have a high sequence identity (40%) and similarity (78%). Note that the 477 

recurrent p.Q402R, p.E407G/p.E407Q and p.Q525R, p.E530G/p.E530K/p.E530Q variants 478 

affect equivalent positions within the respective CUT1 and CUT2 domains, while p.Q420R in 479 

CUT1 and p.E547K in CUT2 affect cognate regions. B) 3D-model of the SATB1 CUT1 domain 480 

(left; PDB 2O4A) and CUT2 domain (right; based on PDB 2CSF) in interaction with DNA 481 

(yellow). Mutated residues are highlighted in red for CUT1 and cyan for CUT2, along the ribbon 482 

visualization of the corresponding domains in burgundy and dark blue, respectively. C) 3D-483 

homology model of the SATB1 homeobox domain (based on PDB 1WI3 and 2D5V) in 484 

interaction with DNA (yellow). The mutated residue is shown in light gray along the ribbon 485 

visualization of the corresponding domain in dark gray. B-C) For more detailed descriptions of 486 

the different missense variants in our cohort, see Suppl. Notes. 487 

 488 

Figure 3. SATB1 missense variants stabilize DNA binding and show increased 489 

transcriptional repression. A) Direct fluorescence super-resolution imaging of nuclei of 490 

HEK293T/17 cells expressing YFP-SATB1 fusion proteins. Scale bar = 5 µm. B) Intensity 491 

profiles of YFP-tagged SATB1 and variants, and the DNA binding dye Hoechst 33342. The 492 

graphs represent the fluorescence intensity values of the position of the red lines drawn in the 493 

micrographs on the top (SATB1 proteins in green, Hoechst 33342 in white, scale bar = 5 µm). 494 

For each condition a representative image and corresponding intensity profile plot is shown. 495 

C) Luciferase reporter assays using reporter constructs containing the IL2-promoter region and 496 

the IgH matrix associated region (MAR) binding site. UK10K control variants are shaded in 497 

green, CUT1 domain variants in red, CUT2 domain variants in blue and the homeobox variant 498 
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in gray. Values are expressed relative to the control (pYFP; black) and represent the 499 

mean ± S.E.M. (n = 4, p-values compared to wildtype SATB1 (WT; white), one-way ANOVA 500 

and post-hoc Bonferroni test). D) FRAP experiments to assess the dynamics of SATB1 501 

chromatin binding in live cells. Left, mean recovery curves ± 95% C.I. recorded in HEK293T/17 502 

cells expressing YFP-SATB1 fusion proteins. Right, violin plots with median of the halftime 503 

(central panel) and maximum recovery values (right panel) based on single-term exponential 504 

curve fitting of individual recordings (n = 60 nuclei from three independent experiments, p-505 

values compared to WT SATB1, one-way ANOVA and post-hoc Bonferroni test). Color code 506 

as in C. E) BRET assays for SATB1 dimerization in live cells. Left, mean BRET saturation 507 

curves ± 95% C.I. fitted using a non-linear regression equation assuming a single binding site 508 

(y = BRETmax * x / (BRET50 / x); GraphPad). The corrected BRET ratio is plotted against the 509 

ratio of fluorescence/luminescence (AU) to correct for expression level differences between 510 

conditions. Right, corrected BRET ratio values at mean BRET50 level of WT SATB1, based 511 

on curve fitting of individual experiments (n = 4, one-way ANOVA and post-hoc Bonferroni test, 512 

no significant differences). Color code as in C. A-E) When compared to WT YFP-SATB1 or 513 

UK10K variants, most variants identified in affected individuals show a nuclear cage-like 514 

localization (A), stronger co-localization with the DNA-binding dye Hoechst 33342 (B), 515 

increased transcriptional repression (C), reduced protein mobility (D) and unchanged capacity 516 

of interaction with WT SATB1 (E). 517 

 518 

Figure 4. SATB1 frameshift variants in the last exon escape NMD. A) Schematic overview 519 

of the SATB1 protein, with truncating variants predicted to escape NMD that are included in 520 

functional assays labeled in orange. A potential SUMOylation site at position p.K744 is 521 

highlighted. B) Sanger sequencing traces of patient-derived EBV-immortalized lymphoblastoid 522 

cell lines treated with or without cycloheximide (CHX) to test for NMD. The mutated nucleotides 523 

are shaded in red. Transcripts from both alleles are present in both conditions showing that 524 

these variants escape NMD. C) Direct fluorescence super-resolution imaging of nuclei of 525 

HEK293T/17 cells expressing SATB1 truncating variants fused with a YFP-tag. Scale bar = 5 526 
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μm. Compared to WT YFP-SATB1, NMD-escaping variants show altered localization forming 527 

nuclear puncta or aggregates. D) Luciferase reporter assays using reporter constructs 528 

containing the IL2-promoter and the IgH matrix associated region (MAR) binding site. Values 529 

are expressed relative to the control (pYFP; black) and represent the mean ± S.E.M. (n = 4, p-530 

values compared to WT SATB1 (white), one-way ANOVA and post-hoc Bonferroni test). All 531 

NMD-escaping variants are transcriptionally active and show repression of the IL2-promoter 532 

and IgH-MAR binding site. 533 

  534 
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Table 1. Summary of clinical characteristics associated with (de novo) SATB1 variants 535 

  All individuals 
Individuals with PTVs and 

(partial) gene deletions 
Individuals with missense 

variants 

  % 
Present / total 

assessed 
% 

Present / total 
assessed 

% 
Present / total 

assessed 

Neurologic             

Intellectual disability 90 28/31 80 8/10 95 20/21 

   Normal 10 3/31 20 2/10 5 1/21 

   Borderline 0 0/31 0 0/10 0 0/21 

   Mild 26 8/31 60 6/10 10 2/21 

   Moderate 10 3/31 10 1/10 10 2/21 

   Severe 19 6/31 0 0/10 29 6/21 

   Profound 19 6/31 0 0/10 29 6/21 

   Unspecified 16 5/31 10 1/10 19 4/21 

Developmental delay 97 35/36 100 12/12 96 23/24 

Motor delay 92 34/37 92 11/12 92 23/25 

Speech delay 89 32/36 83 10/12 92 22/24 

Dysarthria 30 6/20 9 1/11 56 5/9 

Epilepsy 61 22/36 18 2/11 80 20/25 

EEG abnormalities 79 19/24 29 2/7 100 17/17 

Hypotonia 76 28/37 42 5/12 92 23/25 

Spasticity 28 10/36 0 0/12 42 10/24 

Ataxia 22 6/27 17 2/12 27 4/15 

Behavioral disturbances 71 24/34 58 7/12 77 17/22 

Sleep disturbances 41 12/29 27 3/11 50 9/18 

Abnormal brain imaging 55 17/31 43 3/7 58 14/24 

Regression 17 6/35 8 1/12 22 5/23 

Growth             

Abnormalities during pregnancy 24 8/33 27 3/11 23 5/22 

Abnormalities during delivery 32 10/31 55 6/11 20 4/20 

Abnormal term of delivery 6 2/31 10 1/10 5 1/21 

   Preterm (<37 weeks) 6 2/31 10 1/10 5 1/21 

   Postterm (>42 weeks) 0 0/31 0 0/10 0 0/21 

Abnormal weight at birth 16 5/32 22 2/9 13 3/23 

   Small for gestational age (<p10) 9 3/32 11 1/9 9 2/23 

   Large for gestational age (>p90) 6 2/32 11 1/9 4 1/23 

Abnormal head circumference at birth 7 1/14 17 1/6 0 0/8 

   Microcephaly (<p3) 0 0/14 0 0/6 0 0/8 

   Macrocephaly (>p97) 7 1/14 17 1/6 0 0/8 

Abnormal height 21 6/29 9 1/11 28 5/18 

   Short stature (<p3) 14 4/29 0 0/11 22 4/18 

   Tall stature (>p97) 7 2/29 9 1/11 6 1/18 

Abnormal head circumference 26 7/31 11 1/9 32 6/22 

   Microcephaly (<p3) 26 7/31 11 1/9 32 6/22 

   Macrocephaly (>p97) 0 0/31 0 0/9 0 0/22 

Abnormal weight 48 13/27 11 1/9 67 12/18 

   Underweight (<p3) 22 6/27 11 1/9 28 5/18 

   Overweight (>p97) 26 7/27 0 0/9 39 7/18 

Other phenotypic features             

Facial dysmorphisms 67 24/36 64 7/11 68 17/25 

Dental/oral abnormalities 71 24/34 55 6/11 78 18/23 

Drooling/dysphagia 38 12/32 25 3/12 45 9/20 

Hearing abnormalities 7 2/30 18 2/11 0 0/19 

Vision abnormalities 55 17/31 73 8/11 45 9/20 

Cardiac abnormalities 19 6/32 27 3/11 14 3/21 

Skeleton/limb abnormalities 38 13/34 18 2/11 48 11/23 

Hypermobility of joints 30 8/27 30 3/10 29 5/17 

Gastrointestinal abnormalities 53 17/32 27 3/11 67 14/21 

Urogenital abnormalities 17 5/30 0 0/11 26 5/19 

Endocrine/metabolic abnormalities 30 9/30 0 0/11 47 9/19 

Immunological abnormalities 32 8/25 25 2/8 35 6/17 

Skin/hair/nail abnormalities 24 8/34 9 1/11 30 7/23 

Neoplasms in medical history 0 0/34 0 0/11 0 0/23  
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