13 research outputs found

    Whole transcriptome profiling of Late-Onset Alzheimer's Disease patients provides insights into the molecular changes involved in the disease

    Get PDF
    Alzheimer's Disease (AD) is the most common cause of dementia affecting the elderly population worldwide. We have performed a comprehensive transcriptome profiling of Late-Onset AD (LOAD) patients using second generation sequencing technologies, identifying 2,064 genes, 47 lncRNAs and 4 miRNAs whose expression is specifically deregulated in the hippocampal region of LOAD patients. Moreover, analyzing the hippocampal, temporal and frontal regions from the same LOAD patients, we identify specific sets of deregulated miRNAs for each region, and we confirm that the miR-132/212 cluster is deregulated in each of these regions in LOAD patients, consistent with these miRNAs playing a role in AD pathogenesis. Notably, a luciferase assay indicates that miR-184 is able to target the 3'UTR NR4A2 - which is known to be involved in cognitive functions and long-term memory and whose expression levels are inversely correlated with those of miR-184 in the hippocampus. Finally, RNA editing analysis  reveals a general RNA editing decrease in LOAD hippocampus, with 14 recoding sites significantly and differentially edited in 11 genes. Our data underline specific transcriptional changes in LOAD brain and provide an important source of information for understanding the molecular changes characterizing LOAD progression

    The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy

    Get PDF
    The rapid expansion of multicellular native and alien species outbreaks in aquatic and terrestrial ecosystems (bioinvasions) may produce significant impacts on bacterial community dynamics and nutrient pathways with major ecological implications. In aquatic ecosystems, bioinvasions may cause adverse effects on the water quality resulting from changes in biological, chemical and physical properties linked to significant transformations of the microbial taxonomic and functional diversity. Here we used an effective and highly sensitive experimental strategy, bypassing the efficiency bottleneck of the traditional bacterial isolation and culturing method, to identify changes of the planktonic microbial community inhabiting a marine coastal lagoon (Varano, Adriatic Sea) under the influence of an outbreak-forming alien jellyfish species. Water samples were collected from two areas that differed in their level of confinement inside in the lagoon and jellyfish densities (W, up to 12.4 medusae m−3; E, up to 0.03 medusae m−3) to conduct a snapshot microbiome analysis by a metagenomic approach. After extraction of the genetic material in the environmental water samples, we deep-sequenced metagenomic amplicons of the V5–V6 region of the 16S rRNA bacterial gene by an Illumina MiSeq platform. Experiments were carried out in triplicates, so six libraries of dual indexed amplicons of 420 bp were successfully sequenced on the MiSeq platform using a 2 × 250 bp paired-end sequencing strategy. Approximately 7.5 million paired-end reads (i.e. 15 million total reads) were generated, with an average of 2.5 million reads (1.25 M pairs) per sample replicate. The sequence data, analyzed through a novel bioinformatics pipeline (BioMaS), showed that the structure of the resident bacterial community was significantly affected by the occurrence of jellyfish outbreaks. Clear qualitative and quantitative differences were found between the western and eastern areas (characterized by many or few jellyfish), with 84 families, 153 genera and 324 species in the W samples, and 104 families, 199 genera and 331 species in the E samples. Significant differences between the two sampling areas were particularly detected in the occurrence of 16 families, 22 genera and 61 species of microbial taxa. This is the first time that a NGS platform has been used to screen the impact of jellyfish bioinvasions on the aquatic microbiome, providing a preliminary assessment of jellyfish-driven changes of the functional and structural microbial biodiversity

    The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy

    Get PDF

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease

    No full text
    Adenosine to inosine (A-to-I) RNA editing, catalyzed by the ADAR enzyme family, acts on dsRNA structures within pre-mRNA molecules. Editing of the coding part of the mRNA may lead to recoding, amino acid substitution in the resulting protein, possibly modifying its biochemical and biophysical properties. Altered RNA editing patterns have been observed in various neurological pathologies. Here, we present a comprehensive study of recoding by RNA editing in Alzheimer's disease (AD), the most common cause of irreversible dementia. We have used a targeted resequencing approach supplemented by a microfluidic-based high-throughput PCR coupled with next-generation sequencing to accurately quantify A-to-I RNA editing levels in a preselected set of target sites, mostly located within the coding sequence of synaptic genes. Overall, editing levels decreased in AD patients' brain tissues, mainly in the hippocampus and to a lesser degree in the temporal and frontal lobes. Differential RNA editing levels were observed in 35 target sites within 22 genes. These results may shed light on a possible association between the neurodegenerative processes typical for AD and deficient RNA editing

    Bcl6/p53 expression, macrophages/mast cells infiltration and microvascular density in invasive breast carcinoma

    No full text
    To better understand the breast cancer progression and therapeutic resistance is crucial deepen the molecular mechanisms related to regulation of cells behavior in the tumor microenvironment. Inappropriate expression or activation of transcription factors in tumor breast microenvironment can lead to the malignant behavior of breast cancer cells. Bcl6 is a transcriptional factor that may play a role in the pathogenesis of breast cancer. Moreover, cells surrounding tumor cells, including macrophages and mast cells play an important role during tumor progression enhancing angiogenesis. We have demonstrated: 1) An increase of the BCL6 translocation and Bcl6 positive cells in G3 degree of disease; 2) A reduction of the expression of p53 in G3 breast cancer samples as compared to G1/G2 specimens; 3) Macrophages CD68+ and CD163+ in interstitial and periglandular position, increase in G3 specimens as compared to G1/G2 and control samples; 4) Tryptase-positive mast cells in periglandular position are more numerous in G3 tumor specimens as compared to G1/G2 and control samples. Overall, these data confirm the important role played by epigenetic events, including BCL6 translocation, p53 expression, and microenvironment components, including macrophage and mast cell infiltration and microvascular density involved in the regulation of breast cancer progression

    Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients

    No full text
    Several evidences emphasize B-cell pathogenic roles in multiple sclerosis (MS). We performed transcriptome analyses on peripheral B cells from therapy-free patients and age/sex-matched controls. Down-regulation of two transcripts (interferon response factor 1–IRF1, and C-X-C motif chemokine 10–CXCL10), belonging to the same pathway, was validated by RT-PCR in 26 patients and 21 controls. IRF1 and CXCL10 transcripts share potential seeding sequences for hsa-miR-424, that resulted up-regulated in MS patients. We confirmed this interaction and its functional effect by transfection experiments. Consistent findings indicate down-regulation of IRF1/CXCL10 axis, that may plausibly contribute to a pro-survival status of B cells in MS

    Epstein-Barr virus genetic variants are associated with multiple sclerosis

    No full text
    OBJECTIVE: We analyzed the Epstein-Barr nuclear antigen 2 (EBNA2) gene, which contains the most variable region of the viral genome, in persons with multiple sclerosis (MS) and control subjects to verify whether virus genetic variants are involved in disease development. METHODS: A seminested PCR approach and Sanger sequencing were used to analyze EBNA2 in 53 patients and 38 matched healthy donors (HDs). High-throughput sequencing by Illumina MiSeq was also applied in a subgroup of donors (17 patients and 17 HDs). Patients underwent gadolinium-enhanced MRI and human leucocyte antigen typing. RESULTS: MS risk significantly correlated with an excess of 1.2 allele (odds ratio [OR] = 5.13; 95% confidence interval [CI] 1.84-14.32; p = 0.016) and underrepresentation of 1.3B allele (OR = 0.23; 95% CI 0.08-0.51; p = 0.0006). We identified new genetic variants, mostly 1.2 allele- and MS-associated (especially amino acid variation at position 245; OR = 9.4; 95% CI 1.19-78.72; p = 0.0123). In all cases, the consensus sequence from deep sequencing confirmed Sanger sequencing (including the cosegregation of newly identified variants with known EBNA2 alleles) and showed that the extent of genotype intraindividual variability was higher than expected: rare EBNA2 variants were detected in all HDs and patients with MS (range 1-17 and 3-19, respectively). EBNA2 variants did not seem to correlate with human leucocyte antigen typing or clinical/MRI features. CONCLUSIONS: Our study unveils a strong association between Epstein-Barr virus genomic variants and MS, reinforcing the idea that Epstein-Barr virus contributes to disease development

    The HLA-DQβ1 insertion is a strong achalasia risk factor and displays a geospatial north-south gradient among Europeans

    No full text
    Idiopathic achalasia is a severe motility disorder of the esophagus and is characterized by a failure of the lower esophageal sphincter to relax due to a loss of neurons in the myenteric plexus. Most recently, we identified an eight-amino-acid insertion in the cytoplasmic tail of HLA-DQβ1 as strong achalasia risk factor in a sample set from Central Europe, Italy and Spain. Here, we tested whether the HLA-DQβ1 insertion also confers achalasia risk in the Polish and Swedish population. We could replicate the initial findings and the insertion shows strong achalasia association in both samples (Poland P=1.84 × 10(-04), Sweden P=7.44 × 10(-05)). Combining all five European data sets - Central Europe, Italy, Spain, Poland and Sweden - the insertion is achalasia associated with Pcombined=1.67 × 10(-35). In addition, we observe that the frequency of the insertion shows a geospatial north-south gradient. The insertion is less common in northern (around 6-7% in patients and 2% in controls from Sweden and Poland) compared with southern Europeans (~16% in patients and 8% in controls from Italy) and shows a stronger attributable risk in the southern European population. Our study provides evidence that the prevalence of achalasia may differ between populations.European Journal of Human Genetics advance online publication, 6 January 2016; doi:10.1038/ejhg.2015.262.status: publishe
    corecore