184 research outputs found

    Expression of nestin - a stem cell associated intermediate filament in human CNS tumours

    Get PDF
    Background & objectives: Nestin is an intermediate filament protein expressed in undifferentiated cells during the development of brain and is considered as a marker for neuroepithelial stem cells. Expression of this protein in various CNS tumour cells suggests the possibility of existence of tumour stem cell modulating the evolution. We carried out an immunohistochemical study to demonstrate the expression of nestin and its co-expression with neuronal and glial intermediate filament and correlate with the grade of malignancy. Methods: Formalin fixed, paraffin processed sections from two human foetuses, 16 brain tumours of both neuronal and glial lineage and two metastatic tumours were immunostained with polyclonal antibody to nestin. Serial sections from primary brain tumours were also stained with monoclonal antibody to neurofilament (NF) and glial fibrillary acidic protein (GFAP). Fluorescent double labeling was carried out on four cases using laser confocal microscopy, to document co-localization of nestin with other intermediate filaments in the tumour cells. Results: Nestin expression was observed along the paraventricular zone of human foetuses and in brain tumours of both glial and neuronal lineage, of both high and low grades of malignancy. In addition, mature dysplastic spinal motor neurons adjacent to tumour and cerebellar Purkinje cells also expressed nestin along with neurofilament. Interpretation & conclusion: Nestin expression was noted in both low and high grade brain tumours and dysplastic neurons and did not parallel the malignant grade of the tumour. The expression of nestin in tumour cells and dysplastic neurons suggests aberrant expression of antigenically primitive proteins in cells to facilitate remodelling of the cell and migration. More studies are needed to elucidate the concept

    A CPW-fed Sigma-shaped MIMO Antenna for Ka Band and 5G Communication Applications, Journal of Telecommunications and Information Technology, 2018, nr 4

    Get PDF
    This article presents a MIMO compact antenna measuring 45×45×1.6 mm, on the FR4 substrate, proposed for Ka band and 5G communication applications. The proposed design is suitable to overcome the issues connected with massive MIMO. It has four-sigma-shaped radiating elements and a c-shaped ground plane with coplanar waveguide feeding. Its compact dimensions suit it for most existing communications systems. The aerial operates in the 21–30 GHz range, which covers Ka and 5G communication bands. The proposed antenna exhibits the average efficiency of more than 76% within its operating band and gives a minimum signal to noise plus interference ratio. The presented antenna covers several services, such as Ka band satellite downlink applications and future 5G communication applications

    1-(2-Bromo-5-meth­oxy­phen­yl)-8-chloro-6-(2-fluoro­phen­yl)-4H-1,2,4-triazolo[4,3-a][1,4]benzodiazepine

    Get PDF
    The title compound, Csb 23Hsb 15BrClFNsb 4O, is an analogue of sedatives such as midazolam and alprazolam. Its geometrical parameters are normal and comparable with those of related compounds. The only possible significant inter-molecular inter-action is a C-H⋅sO bond

    Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration

    Get PDF
    Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy

    Multilocational Evaluation of Pigeonpea for Broad-Based Resistance to Fusarium Wilt in India

    Get PDF
    Nine-hundred and fifty-nine plgeonpea germplasm and breeding lines were evaluated for resistance to wilt caused by Fusarium udum Butler at 12 locations in India over a period of 7 years between 1984 and 1990. ICP 8863,9174,12745, ICPL333,8363,88047, BWR 370, DPPA 85-2,85-3,85-8,85–13,85–14 and Bandapalera were resistant or moderately resistant at 7 to 10 out of 12 locations for 3 to 5 years with an average wilt incidence of less than 15%

    Multi-location evaluation of pigeonpea (Cajanus cajan) for broad-based resistance to sterility-mosaic disease in India

    Get PDF
    A total of 141 germplasm accessions and 725 breeding lines of pigeon pea were evaluated for resistance to pigeon pea sterility mosaic virus at 13 field locations in India from 1983-84 to 1989-90. Some 50 seeds per test entry were sown at each location and the trials were artificially inoculated by either leaf-stapling (in which 10-15-day-old seedlings were stapled with diseased leaves harbouring mites) or the infector-hedge method (with the susceptible variety NP(WR)15 sown on the border of the nursery 4-6 months in advance of the normal sowing date). The breeding lines included in the evaluation were newly bred, high-yielding lines entered into the Pigeon Pea Co-ordinated trials by ICRISAT and the All-India Co-ordinated Pulses Improvement Project. ICP7182 was used as the susceptible control line. Information is presented on lines and accessions showing broad-based resistance (percentage infection at maturity) during the trial period at each location. Line ICP7035 from Madhyha Pradesh, which contains DSLR55 in its pedigree, was resistant at 12 locations and some 18 lines were resistant at 10 locations

    The lectin concanavalin-A signals MT1-MMP catalytic independent induction of COX-2 through an IKKγ/NF-κB-dependent pathway

    Get PDF
    The lectin from Canavalia ensiformis (Concanavalin-A, ConA), one of the most abundant lectins known, enables one to mimic biological lectin/carbohydrate interactions that regulate extracellular matrix protein recognition. As such, ConA is known to induce membrane type-1 matrix metalloproteinase (MT1-MMP) which expression is increased in brain cancer. Given that MT1-MMP correlated to high expression of cyclooxygenase (COX)-2 in gliomas with increasing histological grade, we specifically assessed the early proinflammatory cellular signaling processes triggered by ConA in the regulation of COX-2. We found that treatment with ConA or direct overexpression of a recombinant MT1-MMP resulted in the induction of COX-2 expression. This increase in COX-2 was correlated with a concomitant decrease in phosphorylated AKT suggestive of cell death induction, and was independent of MT1-MMP’s catalytic function. ConA- and MT1-MMP-mediated intracellular signaling of COX-2 was also confirmed in wild-type and in Nuclear Factor-kappaB (NF-κB) p65−/− mutant mouse embryonic fibroblasts (MEF), but was abrogated in NF-κB1 (p50)−/− and in I kappaB kinase (IKK) γ−/− mutant MEF cells. Collectively, our results highlight an IKK/NF-κB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of COX-2. That signaling pathway could account for the inflammatory balance responsible for the therapy resistance phenotype of glioblastoma cells, and prompts for the design of new therapeutic strategies that target cell surface carbohydrate structures and MT1-MMP-mediated signaling. Concise summary Concanavalin-A (ConA) mimics biological lectin/carbohydrate interactions that regulate the proinflammatory phenotype of cancer cells through yet undefined signaling. Here we highlight an IKK/NF-κB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of cyclooxygenase-2, and that could be responsible for the therapy resistance phenotype of glioblastoma cells

    Intrinsic dynamic behavior of fascin in filopodia

    Get PDF
    Author Posting. © American Society for Cell Biology, 2007. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 18 (2007): 3928-3940, doi:10.1091/mbc.E07-04-0346.Recent studies showed that the actin cross-linking protein, fascin, undergoes rapid cycling between filopodial filaments. Here, we used an experimental and computational approach to dissect features of fascin exchange and incorporation in filopodia. Using expression of phosphomimetic fascin mutants, we determined that fascin in the phosphorylated state is primarily freely diffusing, whereas actin bundling in filopodia is accomplished by fascin dephosphorylated at serine 39. Fluorescence recovery after photobleaching analysis revealed that fascin rapidly dissociates from filopodial filaments with a kinetic off-rate of 0.12 s–1 and that it undergoes diffusion at moderate rates with a coefficient of 6 µm2s–1. This kinetic off-rate was recapitulated in vitro, indicating that dynamic behavior is intrinsic to the fascin cross-linker. A computational reaction–diffusion model showed that reversible cross-linking is required for the delivery of fascin to growing filopodial tips at sufficient rates. Analysis of fascin bundling indicated that filopodia are semiordered bundles with one bound fascin per 25–60 actin monomers.This work was supported by a National Institutes of Health F31National Research Service Award NS055565-01 (to Y.S.A.), Northwestern University Pulmonary and Critical Care Division T32 (to T.E.S.), and National Institutes of Health grant GM-70898 (to G.G.B.)

    Cysteamine Attenuates the Decreases in TrkB Protein Levels and the Anxiety/Depression-Like Behaviors in Mice Induced by Corticosterone Treatment

    Get PDF
    OBJECTIVE: Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of anxiety-like behaviors observed in many neuropsychiatric disorders. Brain-derived neurotrophic factor (BDNF) signaling through its receptor TrkB plays an important role in stress-mediated changes in structural as well as functional neuroplasticity. Studies designed to elucidate the mechanisms whereby TrkB signaling is regulated in chronic stress might provide valuable information for the development of new therapeutic strategies for several stress-related psychiatric disorders. MATERIALS AND METHODS: We examined the potential of cysteamine, a neuroprotective compound to attenuate anxiety and depression like behaviors in a mouse model of anxiety/depression induced by chronic corticosterone exposure. RESULTS: Cysteamine administration (150 mg/kg/day, through drinking water) for 21 days significantly ameliorated chronic corticosterone-induced decreases in TrkB protein levels in frontal cortex and hippocampus. Furthermore, cysteamine treatment reversed the anxiety and depression like behavioral abnormalities induced by chronic corticosterone treatment. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in behavioral tests, suggesting that TrkB signaling plays an important role in the antidepressant effects of cysteamine. CONCLUSIONS: The animal studies described here highlight the potential use of cysteamine as a novel therapeutic strategy for glucocorticoid-related symptoms of psychiatric disorders
    corecore