1,487 research outputs found

    A Paris Law Based Mesh Independent Numerical Methodology for the Simulation of Fatigue Driven Delamination in Composites

    Get PDF
    Delamination evolution under cyclic loading is one of the most important research topics for the application of composite materials to aerospace, naval, automotive and, in general, transportation fields. Large experimental campaigns are needed to assess the fatigue behavior of Carbon Fiber Reinforced Polymers (CFRPs), which may result extremely time and cost consuming. Nevertheless, composite materials design needs to take into account the evolution of fatigue driven damage. Subsequently, the development of efficient and robust computational finite element methodologies to evaluate progression of delamination in composite structural components subjected to cyclic loading conditions has become relevant. In this paper, a numerical finite element procedure able to simulate the fatigue driven delamination growth is introduced. A Paris-law based cycle jump strategy, combined with the Virtual Crack Closure Technique (VCCT) approach, has been implemented in the commercial Finite Element Code ANSYS MECHANICAL via the Ansys Parametric Design Language (APDL). The main advantages of the proposed numerical procedure, named FT-SMXB, are related to its independence on the time step and element size in the frame of incremental analyses. The procedure has been preliminary validated, in this research study, at coupon level, by comparing the numerical results to literature experimental data on a unidirectional graphite/epoxy Double Cantilever Beam (DCB) specimen. The significant agreement between the obtained numerical results and the literature experimental benchmark data confirms the accuracy and the potential of the proposed methodology

    Investigating the Thermo-Mechanical Behavior of a Ceramic Matrix Composite Wing Leading Edge by Sub-Modeling Based Numerical Analyses

    Get PDF
    The thermo-structural design of the wing leading edge of hypersonic vehicles is a very challenging task as high gradients in thermal field, and hence high thermal stresses, are expected. Indeed, when employing passive hot structures based thermal protection systems, very high temperatures (e.g., 1400 °C) are expected on the external surface of the wing leading edge, while the internal structural components are required to not exceed a few hundred degrees Celsius (e.g., 400 °C) at the interface with the internal cold structure. Hence, ceramic matrix composites (CMC) are usually adopted for the manufacturing of the external surface of the wing leading edge since they are characterized by good mechanical properties at very high temperatures (up to 1900 °C) together with an excellent thermal shock resistance. Furthermore, the orthotropic behavior of these materials together with the possibility to tailor their lamination sequence to minimize the heat transferred to internal components, make them very attractive for hot structure based thermal protection systems applications. However, the numerical predictions of the thermo-mechanical behavior of such materials, taking into account the influence of each ply (whose thickness generally ranges between 0.2 and 0.3 mm), can be very expensive from a computational point of view. To overcome this limitation, usually, sub-models are adopted, able to focus on specific and critical areas of the structure where very detailed thermo-mechanical analyses can be performed without significantly affecting the computational efficiency of the global model. In the present work, sub-modeling numerical approaches have been adopted for the analysis of the thermo-mechanical behavior of a ceramic matrix composite wing leading edge of a hypersonic vehicle. The main aim is to investigate the feasibility, in terms of computational efficiency and accuracy of results, in using sub-models for dimensioning complex ceramic matrix components. Hence, a comprehensive study on the size of sub-models and on the choice of their boundaries has been carried out in order to assess the advantages and the limitations in approximating the thermo-mechanical behavior of the investigated global ceramic matrix composite component

    Kinematic Approach for a Global-Local Coupling: Compressive Behaviour of a Delaminated Panel:

    Get PDF
    A kinematic approach to global/local coupling has been applied to investigate the behaviour of a delaminated stiffened composite panel, by using an in-house finite element based procedure. The delamination growth phenomenon has been simulated by employing fracture elements implemented in the B2000++® code, which are based on the Modified Virtual Crack Closure Technique (MVCCT); this technique is able to compute the energy release rate on the delamination front for each fracture mode. A very fine three-dimensional mesh in the delaminated region has been considered in order to obtain a good prediction of the delamination growth. The rest of the structure has been modelled by means of shell elements. A global/local approach based on point-wise multipoint constraint has been implemented in the in-house-code and used to connect shell meshes to solid ones. A numerical application on a delaminated composite stiffened panel taken from literature has been introduced. Models characterized by different levels of complexity, i.e. without delamination, with delamination, with delamination growth have been considered and compared to understand the effectiveness of the introduced kinematic approach

    Application of an Additive Manufactured Hybrid Metal/Composite Shock Absorber Panel to a Military Seat Ejection System

    Get PDF
    In this work, a preliminary numerical assessment on the application of an additive manufactured hybrid metal/composite shock absorber panels to a military seat ejection system, has been carried out. The innovative character of the shock absorber concept investigated is that the absorbing system has a thickness of only 6 mm and is composed of a pyramid-shaped lattice core that, due to its small size, can only be achieved by additive manufacturing. The mechanical behaviour of these shock absorber panels has been examined by measuring their ability to absorb and dissipate the energy generated during the ejection phase into plastic deformations, thus reducing the loads acting on pilots. In this paper the effectiveness of a system composed of five hybrid shock absorbers, with very thin thickness in order to be easily integrated between the seat and the aircraft floor, has been numerically studied by assessing their ability to absorb the energy generated during the primary ejection phase. To accomplish this, a numerical simulation of the explosion has been performed and the energy absorbed by the shock-absorbing mechanism has been assessed. The performed analysis demonstrated that the panels can absorb more than 60% of the energy generated during the explosion event while increasing the total mass of the pilot-seat system by just 0.8%

    Stiffened panels damage tolerance determination using an optimization procedure based on a linear delamination growth approach

    Get PDF
    The damage tolerance of delaminated composite panels under compressive load is usually numerically evaluated by means of computationally expensive non-linear approaches. In this study, an alternative numerical linear approach, able to mimic the delamination propagation initiation, is proposed. With the aim to exploit its benefits, in terms of computational costs reduction, the proposed linear methodology has been used in this study in conjunction with an optimization analysis to assess the damage tolerance of stiffened composite panels with an impact induced delamination under compression. Indeed, the optimization was aimed to find the minimum delamination growth initiation load for a delaminated stiffened panel with variable delamination size and position, providing indications on the damage tolerance capability of the stiffened panel with an arbitrary positioned and sized delamination induced (as an example) by a low energy impact

    Sudden death in lambda light chain AL cardiac amyloidosis: a review of literature and update for clinicians and pathologists

    Get PDF
    Light chain (AL) amyloidosis is the most common type of systemic amyloidosis, affecting around 10 people per million per year. In Europe, approximately 5000 new diagnosis per year are reported. Deposition of amyloid fibrils derived from antibody light chains are key pathogenic agents in AL amyloidosis. They can be deposited in multiple organs but cardiac involvement carries a major risk of mortality. The prognosis is poor in cases associated with multiple myeloma. The average survival is around 1 year. Up to half of all patients with cardiac amyloidosis die suddenly; 75% ofthose deaths are due to heart failure. Ventricular arrhythmia is also associated with cardiac amyloidosis and unexpected death. It is crucial to make a diagnosis and start treatment at an early stage. Recent data suggest that cardiac amyloidosis has become a treatable and curable condition with a combination of agents targeting multiple steps of the amyloid cascade. ICD implantation may not be as effective for the therapy of light chain (AL) cardiac amyloidosis as supposed earlier. In cases of unexpected and sudden death, autopsy may show unknown conditions and is valuable to assess existing risks for family members. Even after careful autopsy, a proportion of sudden deaths, ranging from 2 to 54%, remain unexplained and this broad range of values is likely due to the heterogeneity of autopsy protocols. Post mortem diagnosis of cardiac amyloidosis still represents a challenge for forensic pathologists. Detailed morphologic study of the heart and a complete histopathologic study are mandatory. Immunohistochemistry is essential for amyloid subclassification. A review of existing literature is performed by the authors and a methodological approach in post mortem diagnosis of light chain AL cardiac amyloidosis is proposed. Both macroscopic and microscopic findings are discussed

    Improvement of Urinary Stones Analysis Combining Morphological Analysis and Infrared Spectroscopy

    Get PDF
    Daudon et al. have developed a complex morphoconstitutional classification of renal stone in six different morphological types and several subtypes. According to this classification, a precise correspondence exists between causes of renal stones and subtypes with a great clinical relevance and can be considering a sort of shortcut for the metabolic diagnosis in renal stone patients. Now the diagnosis of causes of renal stones generally requires repeated biochemical investigations on urine and blood samples and usually remains presumptive. We analyzed 150 urinary stones both by stereoscopic microscopy and Fourier transform infrared spectroscopy. The comparison of 150 stones did not reveal any disagreement. We have only 20 partial agreement, and clinicians agreed that the imprecise information obtained with morphological analysis alone would have missed an important clinical finding only in 3 cases. In conclusion, in our opinion, the analysis of urinary stone must combine two different analytical techniques: morphological analysis by stereomicroscope and biochemical analysis with the FT-IR

    Ceftazidime-Avibactam Combination Therapy Compared to Ceftazidime-Avibactam Monotherapy for the Treatment of Severe Infections Due to Carbapenem-Resistant Pathogens: A Systematic Review and Network Meta-Analysis

    Get PDF
    Ceftazidime-avibactam (CZA) is a novel beta-lactam beta-lactamase inhibitor combination approved for the treatment of complicated urinary tract infections, complicated intra-abdominal infections, and for hospital-acquired/ventilator-associated pneumonia. The aim of this systematic review (PROSPERO registration number: CRD42019128927) was to evaluate the effectiveness of CZA combination therapy versus CZA monotherapy in the treatment of severe infections. The databases included in the search, until February 12th, 2020, were MEDLINE by PubMed, EMBASE, and The Cochrane Central Register of Controlled Trials. We included both randomized controlled trials (RCTs) and non-randomized studies published in peer-reviewed journals and in the English language. The primary outcome was all-cause mortality (longest follow-up) evaluated in patients with the diagnosis of infection with at least one pathogen; secondary outcomes were clinical and microbiological improvement/cure. Thirteen studies were included in the qualitative synthesis: 7 RCTs and 6 retrospective studies All the six retrospective studies identified carbapenamase-producing Enterobacteriaceae (CRE) as the cause of infection and for this reason were included in the network meta-analysis (NMA); the quality of the studies, assessed using the New Castle-Ottawa Scale, was moderate-high. In all the six retrospective studies included in the NMA, CZA was used in large part for off-label indications (mostly blood stream infections: 80-100% of patients included). No difference in mortality rate was observed in patients undergoing CZA combination therapy compared to CZA monotherapy [n = 503 patients, direct evidence OR: 0.96, 95% CI: 0.65-1.41]
    • …
    corecore