59 research outputs found

    HLA-DQB1 Allele and Hypocretin in Korean Narcoleptics with Cataplexy

    Get PDF
    Cataplexy is one of the most pathognomonic symptoms in narcolepsy. This study was designed to investigate the frequency of the HLA-DQB1 allele and cerebrospinal fluid (CSF) hypocretin levels in Korean narcoleptics with cataplexy as compared with those who do not have cataplexy. Seventy-two narcoleptics were selected based on polysomnography and multiple sleep latency test as well as their history and clinical symptoms at Sleep Disorders Clinic. The patients were divided into a narcolepsy with cataplexy group (n=56) and a narcolepsy without cataplexy group (n=16). All patients were subjected to HLA typing to determine the frequency of DQB1 allele and to spinal tapping to measure the level of CSF hypocretin. In cataplexy-positive patients, as compared with cataplexy-negative patients, the frequency of HLA-DQB1*0602 was found to be significantly high (89.3% vs. 50.0%) (p=0.003). On the other hand, the frequency of HLA-DQB1*0601 was found to be significantly low (0% vs. 43.8%) (p<0.001). In 48 of 56 cataplexy-positive patients (85.7%), hypocretin levels were decreased (≤110 pg/mL). However, only 6 of 16 cataplexy-negative patients (37.5%) exhibited a decreased hyopcretin level (p<0.001). The high frequency of HLA-DQB1*0602, low frequency of HLA-DQB1*0601 and low hypocretin levels in cataplexy-positive groups suggest that cataplexy-positive narcolepsy might be an etiologically different disease entity from the cataplexy-negative

    Anomalous Hypothalamic Responses to Humor in Cataplexy

    Get PDF
    Cataplexy is observed in a subset of patients with narcolepsy and affects approximately 1 in 2,000 persons. Cataplexy is most often triggered by strong emotions such as laughter, which can result in transient, yet debilitating, muscle atonia. The objective of this study was to examine the neural systems underlying humor processing in individuals with cataplexy.While undergoing functional Magnetic Resonance Imaging (fMRI), we showed ten narcolepsy-cataplexy patients and ten healthy controls humorous cartoons. In addition, we examined the brain activity of one subject while in a full-blown cataplectic attack. Behavioral results showed that participants with cataplexy rated significantly fewer humorous cartoons as funny compared to controls. Concurrent fMRI showed that patients, when compared to controls and in the absence of overt cataplexy symptoms, showed pronounced activity in the emotional network including the ventral striatum and hypothalamus while viewing humorous versus non-humorous cartoons. Increased activity was also observed in the right inferior frontal gyri--a core component of the inhibitory circuitry. In comparison, the one subject who experienced a cataplectic attack showed dramatic reductions in hypothalamic activity.These findings suggest an overdrive of the emotional circuitry and possible compensatory suppression by cortical inhibitory regions in cataplexy. Moreover, during cataplectic attacks, the hypothalamus is characterized by a marked decrease in activity similar to that observed during sleep. One possible explanation for these findings is an initial overdrive and compensatory shutdown of the hypothalamus resulting in full cataplectic symptoms

    Complex movement disorders at disease onset in childhood narcolepsy with cataplexy

    Get PDF
    Narcolepsy with cataplexy is characterized by daytime sleepiness, cataplexy (sudden loss of bilateral muscle tone triggered by emotions), sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. Narcolepsy with cataplexy is most often associated with human leucocyte antigen-DQB1*0602 and is caused by the loss of hypocretin-producing neurons in the hypothalamus of likely autoimmune aetiology. Noting that children with narcolepsy often display complex abnormal motor behaviours close to disease onset that do not meet the classical definition of cataplexy, we systematically analysed motor features in 39 children with narcolepsy with cataplexy in comparison with 25 age- and sex-matched healthy controls. We found that patients with narcolepsy with cataplexy displayed a complex array of ‘negative’ (hypotonia) and ‘active’ (ranging from perioral movements to dyskinetic–dystonic movements or stereotypies) motor disturbances. ‘Active’ and ‘negative’ motor scores correlated positively with the presence of hypotonic features at neurological examination and negatively with disease duration, whereas ‘negative’ motor scores also correlated negatively with age at disease onset. These observations suggest that paediatric narcolepsy with cataplexy often co-occurs with a complex movement disorder at disease onset, a phenomenon that may vanish later in the course of the disease. Further studies are warranted to assess clinical course and whether the associated movement disorder is also caused by hypocretin deficiency or by additional neurochemical abnormalities

    Narcolepsy type 1 features across the life span: age impact on clinical and polysomnographic phenotype

    No full text

    Images: Facial cataplexy with demonstration of persistent eye movements

    No full text
    corecore