116 research outputs found

    Water saturation effects on P-wave anisotropy in synthetic sandstone with aligned fractures

    Get PDF
    The seismic properties of rocks are known to be sensitive to partial liquid or gas saturation, and to aligned fractures. P-wave anisotropy is widely used for fracture characterization and is known to be sensitive to the saturating fluid. However, studies combining the effect of multiphase saturation and aligned fractures are limited even though such conditions are common in the subsurface. An understanding of the effects of partial liquid or gas saturation on P-wave anisotropy could help improve seismic characterization of fractured, gas bearing reservoirs. Using octagonal-shaped synthetic sandstone samples, one containing aligned penny-shaped fractures and the other without fractures, we examined the influence of water saturation on P-wave anisotropy in fractured rocks. In the fractured rock, the saturation related stiffening effect at higher water saturation values is larger in the direction across the fractures than along the fractures. Consequently, the anisotropy parameter ‘?’ decreases as a result of this fluid stiffening effect. These effects are frequency dependent as a result of wave-induced fluid flow mechanisms. Our observations can be explained by combining a frequency-dependent fractured rock model and a frequency-dependent partial saturation model

    Modelling ultrasonic laboratory measurements of the saturation dependence of elastic modulus: new insights and implications for wave propagation mechanisms

    Get PDF
    Seismic time-lapse techniques are a valuable tool used to estimate the mobilization and distribution of stored CO2 in depleted reservoirs. The success of these techniques depends on knowing the seismic properties of partially saturated rocks with accuracy. It is commonplace to use controlled laboratory-scale experiments to determine how the fluid content impacts on their properties. In this work, we measure the ultrasonic P- and S-wave velocities of a set of synthetic sandstones of about 30% porosity. Using an accurate method, we span the entire saturation range of an air-water system. We show that the rocks’ elastic behaviour is consistent with patchy saturation and squirt flow models but observe a discontinuity at around 90% gas saturation which can be interpreted in two very different ways. In one interpretation, the responsible mechanism is frequency-dependent squirt-flow that occurs in narrow pores that are preferentially saturated. An equally plausible mechanism is the change of the mobile fluid in the pores once they are wetted. Extrapolated to seismic frequencies, our results imply that the seismic properties of rocks may be affected by the wetting effect with an impact on the interpretation of field data but would potentially be unaffected by the squirt flow effect. This provides strong motivation to conduct laboratory-scale experiments with partially saturated samples at lower frequency or, ideally, a range of frequencies in the seismo-acoustic range

    CO2‐Brine substitution effects on ultrasonic wave propagation through sandstone with oblique fractures

    Get PDF
    Seismic monitoring of injected CO2 plumes in fractured storage reservoirs relies on accurate knowledge of the physical mechanisms governing elastic wave propagation, as described by appropriate, validated rock physics models. We measured laboratory ultrasonic velocity and attenuation of P and S waves, and electrical resistivity, of a synthetic fractured sandstone with obliquely aligned (penny‐shaped) fractures, undergoing a brine‐CO2 flow‐through test at simulated reservoir pressure and temperature. Our results show systematic differences in the dependence of velocity and attenuation on fluid saturation between imbibition and drainage episodes, which we attribute to uniform and patchy fluid distributions, respectively, and the relative permeability of CO2 and brine in the rock. This behavior is consistent with predictions from a multifluid rock physics model, facilitating the identification of the dispersive mechanisms associated with wave‐induced fluid flow in fractured systems at seismic scales

    Ocjene, prikazi i skupovi

    Get PDF
    Ocjene knjiga/zbornika radova/skupova: Josip Matasović i paradigma kulturne povijesti: zbornik radova znanstvenog skupa odrĆŸanog u Slavonskom Brodu 23.-24. studenoga 2012., ur. Suzana Leček, Slavonski Brod, Zagreb: Hrvatski institut za povijest, PodruĆŸnica za povijest Slavonije, Srijema i Baranje, Hrvatski drĆŸavni arhiv DruĆĄtvo za hrvatsku povjesnicu, 2013., 446. str.; Josip Glaurdić, Vrijeme Europe: Zapadne sile i raspad Jugoslavije, Zagreb: Mate d.o.o., 2011., 453.str.; 21. godiĆĄnja konferencija Euroclia – „Kako podijeliti naĆĄe kulturno nasljeđe“ Skopje-Ohrid, 31. oĆŸujka -5. travnja 2014

    Controlled-source electromagnetic and seismic delineation of sub-seafloor fluid flow structures in a gas hydrate province, offshore Norway

    Get PDF
    Deep sea pockmarks underlain by chimney-like or pipe structures that contain methane hydrate are abundant along the Norwegian continental margin. In such hydrate provinces the interaction between hydrate formation and fluid flow has significance for benthic ecosystems and possibly climate change. The Nyegga region, situated on the western Norwegian continental slope, is characterized by an extensive pockmark field known to accommodate substantial methane gas hydrate deposits. The aim of this study is to detect and delineate both the gas hydrate and free gas reservoirs at one of Nyegga's pockmarks. In 2012, a marine controlled-source electromagnetic (CSEM) survey was performed at a pockmark in this region, where high-resolution three-dimensional seismic data were previously collected in 2006. Two-dimensional CSEM inversions were computed using the data acquired by ocean bottom electrical field receivers. Our results, derived from unconstrained and seismically constrained CSEM inversions, suggest the presence of two distinctive resistivity anomalies beneath the pockmark: a shallow vertical anomaly at the underlying pipe structure, likely due to gas hydrate accumulation, and a laterally extensive anomaly attributed to a free gas zone below the base of the gas hydrate stability zone. This work contributes to a robust characterization of gas hydrate deposits within sub-seafloor fluid flow pipe structures

    Elastic and electrical properties and permeability of serpentinites from Atlantis Massif, Mid-Atlantic Ridge

    Get PDF
    Serpentinized peridotites co-exist with mafic rocks in a variety of marine environments including subduction zones, continental rifts and mid-ocean ridges. Remote geophysical methods are crucial to distinguish between them and improve the understanding of the tectonic, magmatic and metamorphic history of the oceanic crust. But, serpentinite peridotites exhibit a wide range of physical properties that complicate such a distinction. We analyzed the ultrasonic P- and S-wave velocities (Vp, Vs) and their respective attenuation (Qp−1, Qs−1), electrical resistivity and permeability of four serpentinized peridotite samples from the southern wall of the Atlantis Massif, Mid-Atlantic Ridge, collected during International Ocean Discovery Program (IODP) Expedition 357. The measurements were taken over a range of loading-unloading stress paths (5 - 45 MPa), using ∌1.7 cm length, 5 cm diameter samples horizontally extracted from the original cores drilled on the seafloor. The measured parameters showed variable degrees of stress dependence, but followed similar trends. Vp, Vs, resistivity and permeability show good inter-correlations, while relationships that included Qp−1 and Qs−1 are less clear. Resistivity showed high contrast between highly serpentinized ultramafic matrix (> 50 Ω m) and mechanically/geochemically altered (magmatic/hydrothermal-driven alteration) domains (< 20 Ω m). This information together with the elastic constants (Vp/Vs ratio and bulk moduli) of the samples allowed us to infer useful information about the degree of serpentinization and the alteration state of the rock, contrasted by petrographic analysis. This study shows the potential of combining seismic techniques and controlled source electromagnetic surveys for understanding tectono-magmatic processes and fluid pathways in hydrothermal systems

    Shale distribution effects on the joint elastic–electrical properties in reservoir sandstone

    Get PDF
    We investigated the effect of shale distribution on the joint elastic wave and electrical properties of shaly reservoir sandstones using a dataset of laboratory measurements on 75 brine-saturated (35 g/L salinity) rock samples (63 samples from the literature, 12 newly measured samples). All the data were collected using the ultrasonic (700 kHz) pulse-echo measurement technique for P- and S-wave velocities (Vp, Vs), attenuations (Qp−1, Qs−1), and a four-electrode method for resistivity under elevated hydrostatic confining pressures between 10 and 50 MPa (pore fluid pressure 5 MPa). The distribution of volumetric shale content was classified by comparing the calculated dry P-wave modulus to the modified Upper Hashin–Shtrikman bound for quartz and air mixtures, assuming pore-filling shale. This scheme in particular allowed us to distinguish between pore-filling and load-bearing shale distributions according to idealized definitions, which provides new insight into the joint ultrasonic properties and resistivity behaviour for shaly sandstones. In resistivity–velocity space, the resistivity of load-bearing shale increases with increasing velocity which form a more distinct trend with steeper gradient compared to those for partial pore-filling shale and clean sandstones. Moreover, the pore-filling shale trend straddles the clean sandstone trend and meets the load-bearing shale trend between 100 and 150 apparent formation factors. In resistivity–attenuation space, the highest attenuations exist when the volumetric shale content is close to the frame porosity (for Qp−1 in particular), at the transition between pore-filling and load-bearing shales. The results will inform the development of improved rock physics models to aid reservoir characterization from geophysical remote sensing, particularly for joint seismic and controlled source electromagnetic surveys

    Laboratory observations of frequency-dependent ultrasonic P-wave velocity and attenuation during methane hydrate formation in Berea sandstone

    Get PDF
    Knowledge of the effect of methane hydrate saturation and morphology on elastic wave attenuation could help reduce ambiguity in seafloor hydrate content estimates. These are needed for seafloor resource and geohazard assessment, as well as to improve predictions of greenhouse gas fluxes into the water column. At low hydrate saturations, measuring attenuation can be particularly useful as the seismic velocity of hydrate-bearing sediments is relatively insensitive to hydrate content. Here, we present laboratory ultrasonic (448–782 kHz) measurements of P-wave velocity and attenuation for successive cycles of methane hydrate formation (maximum hydrate saturation of 26 per cent) in Berea sandstone. We observed systematic and repeatable changes in the velocity and attenuation frequency spectra with hydrate saturation. Attenuation generally increases with hydrate saturation, and with measurement frequency at hydrate saturations below 6 per cent. For hydrate saturations greater than 6 per cent, attenuation decreases with frequency. The results support earlier experimental observations of frequency-dependent attenuation peaks at specific hydrate saturations. We used an effective medium rock-physics model which considers attenuation from gas bubble resonance, inertial fluid flow and squirt flow from both fluid inclusions in hydrate and different aspect ratio pores created during hydrate formation. Using this model, we linked the measured attenuation spectral changes to a decrease in coexisting methane gas bubble radius, and creation of different aspect ratio pores during hydrate formation

    Experimental assessment of pore fluid distribution and geomechanical changes in saline sandstone reservoirs during and after CO2 injection

    Get PDF
    Responsible CO2 geosequestration requires a comprehensive assessment of the geomechanical integrity of saline reservoir formations during and after CO2 injection. We assessed the geomechanical effects of CO2 injection and post-injection aquifer recharge on weakly cemented, synthetic-sandstone (38% porosity) sample in the laboratory under dry and brine-saturated conditions, before and after subjecting the sample to variable pore pressure brine-CO2 flow-through tests (∌170 h). We measured ultrasonic P- and S-wave velocities (Vp, Vs) and attenuations, electrical resistivity and volumetric strain (Δv). Vs was found to be an excellent indicator of mechanical deformation during CO2 injection; Vp gives mechanical and pore fluid distribution information, allowing quantification of the individual contribution of both phenomena when combined with resistivity. Abrupt strain recovery during imbibition suggests that aquifer recharge after ceasing CO2 injection might affect the geomechanical stability of the reservoir. Static and dynamic parameters indicate the sample experienced minor geomechanical changes during CO2 exposure, with an increase of ΔΔv <3% and a drop in ΔVs ∌1%. In contrast, due to brine-induced hydro-mechanical alteration, ΔΔv increased by ∌10% and ΔVs by ∌6%. This study provides a multiparameter, thermo-hydro-mechanical-chemical database needed to validate monitoring tools and simulators, for prediction of the geomechanical behaviour of CO2 storage reservoirs
    • 

    corecore