3,258 research outputs found

    A statistical approach to identify superluminous supernovae and probe their diversity

    Get PDF
    We investigate the identification of hydrogen-poor superluminous supernovae (SLSNe I) using a photometric analysis, without including an arbitrary magnitude threshold. We assemble a homogeneous sample of previously classified SLSNe I from the literature, and fit their light curves using Gaussian processes. From the fits, we identify four photometric parameters that have a high statistical significance when correlated, and combine them in a parameter space that conveys information on their luminosity and color evolution. This parameter space presents a new definition for SLSNe I, which can be used to analyse existing and future transient datasets. We find that 90% of previously classified SLSNe I meet our new definition. We also examine the evidence for two subclasses of SLSNe I, combining their photometric evolution with spectroscopic information, namely the photospheric velocity and its gradient. A cluster analysis reveals the presence of two distinct groups. `Fast' SLSNe show fast light curves and color evolution, large velocities, and a large velocity gradient. `Slow' SLSNe show slow light curve and color evolution, small expansion velocities, and an almost non-existent velocity gradient. Finally, we discuss the impact of our analyses in the understanding of the powering engine of SLSNe, and their implementation as cosmological probes in current and future surveys.Comment: 16 pages, 9 figures, accepted by ApJ on 23/01/201

    Automated seismic waveform location using multichannel coherency migration (MCM)–I: theory

    Get PDF
    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets

    Analogue Cosmological Particle Creation: Quantum Correlations in Expanding Bose Einstein Condensates

    Full text link
    We investigate the structure of quantum correlations in an expanding Bose Einstein Condensate (BEC) through the analogue gravity framework. We consider both a 3+1 isotropically expanding BEC as well as the experimentally relevant case of an elongated, effectively 1+1 dimensional, expanding condensate. In this case we include the effects of inhomogeneities in the condensate, a feature rarely included in the analogue gravity literature. In both cases we link the BEC expansion to a simple model for an expanding spacetime and then study the correlation structure numerically and analytically (in suitable approximations). We also discuss the expected strength of such correlation patterns and experimentally feasible BEC systems in which these effects might be detected in the near future.Comment: Reference adde

    Spiral Galaxies Rotation Curves with a Logarithmic Corrected Newtonian Gravitational Potential

    Full text link
    We analyze the rotation curves of 10 spiral galaxies with a newtonian potential corrected with an extra logarithmic term, using a disc modelization for the spiral galaxies. There is a new constant associated with the extra term in the potential. The rotation curve of the chosen sample of spiral galaxies is well reproduced for a given range of the new constant. It is argued that this correction can have its origin from string configurations. The compatibility of this correction with local physics is discussed.Comment: Latex file, 6 pages, 20 figure

    The spacetime structure of MOND with Tully-Fisher relation and Lorentz invariance violation

    Full text link
    It is believed that the modification of Newtonian dynamics (MOND) is possible alternate for dark matter hypothesis. Although Bekenstein's TeVeS supplies a relativistic version of MOND, one may still wish a more concise covariant formulism of MOND. In this paper, within covariant geometrical framwork, we present another version of MOND. We show the spacetime structure of MOND with properties of Tully-Fisher relation and Lorentz invariance violation.Comment: 6 pages. arXiv admin note: substantial text overlap with arXiv:1111.1383 and arXiv:1108.344

    Functional network changes and cognitive control in schizophrenia

    Get PDF
    Cognitive control is a cognitive and neural mechanism that contributes to managing the complex demands of day-to-day life. Studies have suggested that functional impairments in cognitive control associated brain circuitry contribute to a broad range of higher cognitive deficits in schizophrenia. To examine this issue, we assessed functional connectivity networks in healthy adults and individuals with schizophrenia performing tasks from two distinct cognitive domains that varied in demands for cognitive control, the RiSE episodic memory task and DPX goal maintenance task. We characterized general and cognitive control-specific effects of schizophrenia on functional connectivity within an expanded frontal parietal network (FPN) and quantified network topology properties using graph analysis. Using the network based statistic (NBS), we observed greater network functional connectivity in cognitive control demanding conditions during both tasks in both groups in the FPN, and demonstrated cognitive control FPN specificity against a task independent auditory network. NBS analyses also revealed widespread connectivity deficits in schizophrenia patients across all tasks. Furthermore, quantitative changes in network topology associated with diagnostic status and task demand were observed. The present findings, in an analysis that was limited to correct trials only, ensuring that subjects are on task, provide critical insights into network connections crucial for cognitive control and the manner in which brain networks reorganize to support such control. Impairments in this mechanism are present in schizophrenia and these results highlight how cognitive control deficits contribute to the pathophysiology of this illness
    • …
    corecore