2,399 research outputs found

    Measuring the hydrostatic mass bias in galaxy clusters by combining Sunyaev-Zel'dovich and CMB lensing data

    Full text link
    The cosmological parameters prefered by the cosmic microwave background (CMB) primary anisotropies predict many more galaxy clusters than those that have been detected via the thermal Sunyaev-Zeldovich (tSZ) effect. This tension has attracted considerable attention since it could be evidence of physics beyond the simplest Λ\LambdaCDM model. However, an accurate and robust calibration of the mass-observable relation for clusters is necessary for the comparison, which has been proven difficult to obtain so far. Here, we present new contraints on the mass-pressure relation by combining tSZ and CMB lensing measurements about optically-selected clusters. Consequently, our galaxy cluster sample is independent from the data employed to derive cosmological constrains. We estimate an average hydrostatic mass bias of b=0.26±0.07b = 0.26 \pm 0.07, with no significant mass nor redshift evolution. This value greatly reduces the tension between the predictions of Λ\LambdaCDM and the observed abundance of tSZ clusters while being in agreement with recent estimations from tSZ clustering. On the other hand, our value for bb is higher than the predictions from hydro-dynamical simulations. This suggests the existence of mechanisms driving large departures from hydrostatic equilibrium and that are not included in state-of-the-art simulations, and/or unaccounted systematic errors such as biases in the cluster catalogue due to the optical selection.Comment: 4 pages, 3 figure

    How BAO measurements can fail to detect quintessence

    Full text link
    We model the nonlinear growth of cosmic structure in different dark energy models, using large volume N-body simulations. We consider a range of quintessence models which feature both rapidly and slowly varying dark energy equations of state, and compare the growth of structure to that in a universe with a cosmological constant. The adoption of a quintessence model changes the expansion history of the universe, the form of the linear theory power spectrum and can alter key observables, such as the horizon scale and the distance to last scattering. The difference in structure formation can be explained to first order by the difference in growth factor at a given epoch; this scaling also accounts for the nonlinear growth at the 15% level. We find that quintessence models which feature late (z<2)(z<2), rapid transitions towards w=1w=-1 in the equation of state, can have identical baryonic acoustic oscillation (BAO) peak positions to those in Λ\LambdaCDM, despite being very different from Λ\LambdaCDM both today and at high redshifts (z1000)(z \sim 1000). We find that a second class of models which feature non-negligible amounts of dark energy at early times cannot be distinguished from Λ\LambdaCDM using measurements of the mass function or the BAO. These results highlight the need to accurately model quintessence dark energy in N-body simulations when testing cosmological probes of dynamical dark energy.Comment: 10 pages, 7 figures, to appear in the Invisible Univers International Conference AIP proceedings serie

    Direct measurement of the 14N(p,g)15O S-factor

    Full text link
    We have measured the 14N(p,g)15O excitation function for energies in the range E_p = 155--524 keV. Fits of these data using R-matrix theory yield a value for the S-factor at zero energy of 1.64(17) keV b, which is significantly smaller than the result of a previous direct measurement. The corresponding reduction in the stellar reaction rate for 14N(p,g)15O has a number of interesting consequences, including an impact on estimates for the age of the Galaxy derived from globular clusters.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Few-body decay and recombination in nuclear astrophysics

    Get PDF
    Three-body continuum problems are investigated for light nuclei of astrophysical relevance. We focus on three-body decays of resonances or recombination via resonances or the continuum background. The concepts of widths, decay mechanisms and dynamic evolution are discussed. We also discuss results for the triple α\alpha decay in connection with 2+2^+ resonances and density and temperature dependence rates of recombination into light nuclei from α\alpha-particles and neutrons.Comment: 9 pages, 8 figures. Proceedings of the 21st European Few Body Conference held in Salamanca (Spain) in August-September 201

    Implementation of a 10.24 GS/s 12-bit Optoelectronics Analog-to-Digital Converter Based on a Polyphase Demultiplexing Architecture

    Get PDF
    AbstractIn this paper we present the practical implementation of a high-speed polyphase sampling and demultiplexing architecture for optoelectronics analog-to-digital converters (OADCs). The architecture consists of a one-stage divide-by-eight decimator circuit where optically-triggered samplers are cascaded to sample an analog input signal, and demultiplex different phases of the sampled signal to yield low data rate for electronic quantization. Electrical-in to electrical-out data format is maintained through the sampling, demultiplexing and quantization processes of the architecture thereby avoiding the need for electrical-to-optical and optical-to-electrical signal conversions. We experimentally demonstrate a 10.24 giga samples per second (GS/s), 12-bit resolution OADC system comprising the optically-triggered sampling circuits integrated with commercial electronic quantizers. Measurements performed on the OADC yielded an effective bit resolution (ENOB) of 10.3 bits, spurious free dynamic range (SFDR) of -32 dB and signal-to-noise and distortion ratio (SNDR) of 63.7 dB

    The Birth and Growth of Neutralino Haloes

    Full text link
    We use the Extended-Press-Schechter (EPS) formalism to study halo assembly histories in a standard Λ\LambdaCDM cosmology. A large ensemble of Monte Carlo random walks provides the {\it entire} halo membership histories of a representative set of dark matter particles, which we assume to be neutralinos. The first generation halos of most particles do not have a mass similar to the free-streaming cut-off Mf.s.M_{f.s.} of the neutralino power spectrum, nor do they form at high redshift. Median values are M1=105M_1 = 10^5 to 107Mf.s.10^7M_{f.s.} and z1=13z_1 = 13 to 8 depending on the form of the collapse barrier assumed in the EPS model. For almost a third of all particles the first generation halo has M1>109Mf.s.M_1>10^9M_{f.s.}. At redshifts beyond 20, most neutralinos are not yet part of any halo but are still diffuse. These numbers apply with little modification to the neutralinos which are today part of halos similar to that of the Milky Way. Up to 10% of the particles in such halos were never part of a smaller object; the typical particle has undergone 5\sim 5 "accretion events' where the halo it was part of falls into a more massive object. Available N-body simulations agree well with the EPS predictions for an "ellipsoidal" collapse barrier, so these may provide a reliable extension of simulation results to smaller scales. The late formation times and large masses of the first generation halos of most neutralinos imply that they will be disrupted with high efficiency during halo assembly.Comment: 7 pages, 7 figure

    Impact of Scale Dependent Bias and Nonlinear Structure Growth on the ISW Effect: Angular Power Spectra

    Full text link
    We investigate the impact of nonlinear evolution of the gravitational potentials in the LCDM model on the Integrated Sachs-Wolfe (ISW) contribution to the CMB temperature power spectrum, and on the cross-power spectrum of the CMB and a set of biased tracers of the mass. We use an ensemble of N-body simulations to directly follow the potentials and compare results to perturbation theory (PT). The predictions from PT match the results to high precision for k<0.2 h/Mpc. We compute the nonlinear corrections to the angular power spectrum and find them to be <10% of linear theory for l<100. These corrections are swamped by cosmic variance. On scales l>100 the departures are more significant, however the CMB signal is more than a factor 10^3 larger at this scale. Nonlinear ISW effects therefore play no role in shaping the CMB power spectrum for l<1500. We analyze the CMB--density tracer cross-spectrum using simulations and renormalized bias PT, and find good agreement. The usual assumption is that nonlinear evolution enhances the growth of structure and counteracts linear ISW on small scales, leading to a change in sign of the CMB-LSS cross-spectrum at small scales. However, PT analysis suggests that this trend reverses at late times when the logarithmic growth rate f(a)=dlnD/dlna<0.5 or om_m(a)<0.3. Numerical results confirm these expectations and we find no sign change in ISW-LSS cross-power for low redshifts. Corrections due to nonlinearity and scale dependence of the bias are found to be <10% for l<100, therefore below the S/N of the current and future measurements. Finally, we estimate the CMB--halo cross-correlation coefficient and show that it can be made to match that for CMB--dark matter to within 5% for thin redshift shells, mitigating the need to model bias evolution.Comment: 27 pages, 19 figure. Hi-res. version: http://www.itp.uzh.ch/~res/NonlinearISW.HiRes.pd

    Nucleosynthesis of light element isotopes in evolved stars experiencing extended mixing

    Full text link
    We present computations of nucleosynthesis in red giants and asymptotic giant branch stars of Population I experiencing extended mixing. The assumed physical cause for mass transport is the buoyancy of magnetized structures, according to recent suggestions. The peculiar property of such a mechanism is to allow for both fast and slow mixing phenomena, as required for reproducing the spread in Li abundances displayed by red giants and as discussed in an accompanying paper. We explore here the effects of this kind of mass transport on CNO and intermediatemass nuclei and compare the results with the available evidence from evolved red giants and from the isotopic composition of presolar grains of AGB origin. It is found that a good general accord exists between predictions and measurements; in this framework we also show which type of observational data best constrains the various parameters. We conclude that magnetic buoyancy, allowing for mixing at rather different speeds, can be an interesting scenario to explore for explaining together the abundances of CNO nuclei and of Li.Comment: 8 pages, 7 figures, proceeding of 'The Origin of the Elements Heavier than Fe' September 24-28, 2008, Torino, Italy. PASA (accepted for publication
    corecore