28 research outputs found

    Spume Drops Produced by the Wind Tearing of Wave Crests

    Get PDF
    The wind tearing of breaking wave crests produces spume drops. The authors report preliminary laboratory data from direct and unambiguous observation of this process under various wind conditions using a video imaging technique. Results include the size distribution and production rates of these drops. The curves for production rates at different wind speeds merge effectively when normalized by the number of breaking events. This confirms that wave breaking occurrence, not the wind speed, is a dominant factor in spume production

    Parameterization of oceanic whitecap fraction based on satellite observations

    Get PDF
    In this study, the utility of satellite-based white-cap fraction (W) data for the prediction of sea spray aerosol (SSA) emission rates is explored. More specifically, the study aims at evaluating how an account for natural variability of whitecaps in the W parameterization would affect SSA mass flux predictions when using a sea spray source function (SSSF) based on the discrete whitecap method. The starting point is a data set containing W data for 2006 together with matching wind speed U-10 and sea surface temperature (SST) T. Whitecap fraction W was estimated from observations of the ocean surface brightness temperature T-B by satellite-borne radiometers at two frequencies (10 and 37 GHz). A global-scale assessment of the data set yielded approximately quadratic correlation between W and U-10. A new global W(U-10) parameterization was developed and used to evaluate an intrinsic correlation between W and U-10 that could have been introduced while estimating W from T B. A regional-scale analysis over different seasons indicated significant differences of the coefficients of regional W(U-10) relationships. The effect of SST on W is explicitly accounted for in a new W(U-10, T) parameterization. The analysis of W values obtained with the new W(U-10) and W(U-10, T) parameterizations indicates that the influence of secondary factors on W is for the largest part embedded in the exponent of the wind speed dependence. In addition, the W(U-10, T) parameterization is able to partially model the spread (or variability) of the satellite-based W data. The satellite-based parameterization W(U-10, T) was applied in an SSSF to estimate the global SSA emission rate. The thus obtained SSA production rate for 2006 of 4.4 x 10(12) kg year(-1) is within previously reported estimates, however with distinctly different spatial distribution.Peer reviewe

    Production Mechanisms, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols

    Get PDF
    (First paragraph) The impact of sea spray aerosols on global climate remains one of the most uncertain components of the aerosol–radiation–climate problem, but has received less attention than the impacts of terrestrial and anthropogenic aerosols. The last decade has produced a large body of information regarding the sources and composition of marine aerosols, resulting in a reassessment of the complex role that sea spray particles play in climate and various geophysical phenomena. As sea spray aerosol contributes substantially to the preindustrial, natural background which provides the baseline on top of which anthropogenic forcing should be quantified, and because the ocean covers over 70% of the Earth’s surface, the representation of sea spray aerosol in climate models strongly influences the predicted impact on climate of anthropogenic aerosols via direct and indirect effects. In addition, climate change affects atmospheric parameters, such as wind speed which has controlling effect on the production of sea spray aerosol. Recent reviews on sea spray aerosol production and composition (de Leeuw et al., 2011) summarized the state of the art and remaining uncertainties

    Effects of Salinity on Surface Lifetime of Large Individual Bubbles

    No full text
    The influence of salinity on the characteristics of individual bubbles (2–4 mm in diameter) in fresh and saline water (up to 40 practical salinity units) was investigated. Bubbles were produced by forcing air through capillary tubes. Aqueous solutions in distilled and filtered tap waters with minimized presence of organic additives were used. Salinity, surface tension, and water temperature were monitored. Parameters measured were the bubble surface lifetime, diameter, and rise velocity. The surface lifetime varies widely (in the range of 0.4–35 s) depending on the salinity concentration and the purity of the solutions. Variations with salinity of size and rise velocity of large individual bubbles are discussed. Interpretation of the results in terms of anti-foaming (negative adsorption), as well as the Marangoni and the Gibbs effects, is helpful in understanding the results

    Effects of Salinity on Bubble Cloud Characteristics

    No full text
    A laboratory experiment investigates the influence of salinity on the characteristics of bubble clouds in varying saline solutions. Bubble clouds were generated with a water jet. Salinity, surface tension, and water temperature were monitored. Measured bubble cloud parameters include the number of bubbles, the void fraction, the penetration depth, and the cloud shape. The number of large (above 0.5 mm diameter) bubbles within a cloud increases by a factor of three from fresh to saline water of 20 psu (practical salinity units), and attains a maximum value for salinity of 12–25 psu. The void fraction also has maximum value in the range 12–25 psu. The results thus show that both the number of bubbles and the void fraction vary nonmonotonically with increasing salinity. The lateral shape of the bubble cloud does not change with increasing salinity; however, the lowest point of the cloud penetrates deeper as smaller bubbles are generated

    Effects of Salinity on Surface Lifetime of Large Individual Bubbles

    No full text
    The influence of salinity on the characteristics of individual bubbles (2–4 mm in diameter) in fresh and saline water (up to 40 practical salinity units) was investigated. Bubbles were produced by forcing air through capillary tubes. Aqueous solutions in distilled and filtered tap waters with minimized presence of organic additives were used. Salinity, surface tension, and water temperature were monitored. Parameters measured were the bubble surface lifetime, diameter, and rise velocity. The surface lifetime varies widely (in the range of 0.4–35 s) depending on the salinity concentration and the purity of the solutions. Variations with salinity of size and rise velocity of large individual bubbles are discussed. Interpretation of the results in terms of anti-foaming (negative adsorption), as well as the Marangoni and the Gibbs effects, is helpful in understanding the results

    Improving the Representation of Whitecap Fraction and Sea Salt Aerosol Emissions in the ECMWF IFS-AER

    No full text
    The European Centre for Medium-Range Weather Forecasts (ECMWF) operates the Integrated Forecasting System aerosol module (IFS-AER) to provide daily global analysis and forecast of aerosols for the Copernicus Atmosphere Monitoring Service (CAMS). New estimates of sea salt aerosol emissions have been implemented in the IFS-AER using a new parameterization of whitecap fraction as a function of wind speed and sea surface temperature. The effect of whitecap fraction simulated by old and new parameterizations has been evaluated by comparing the IFS-AER new sea salt aerosol characteristics to those of aerosol retrievals. The new parameterization brought a significant improvement as compared to the two parameterizations of sea salt aerosol emissions previously implemented in the IFS-AER. Likewise, the simulated sea salt aerosol optical depth and surface concentration are significantly improved, as compared against ground and remote sensing products
    corecore