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Aerosol modeling  : Status and future

Observations Aerosol modeling

Data Assimilation Evaluation and 

developmentObs + Model : 
Calculate 

increments

• Multi-platform 

multi-spectral aerosol 

retrievals from satellites 

• In-situ aerosol mass and 

optical properties

• Best possible 

meteorology : Multi-model 

ensemble

• Aerosol mass, size distribution and 

optical properties 

• Point by point 

observation 

uncertainty
• Choice of  aerosol variables

• Clear sky radiance

• Use of  aerosol variables not used in 

assimilation – process-based 

improvements to models
3
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Observation constrained modeling

Good representation of  atmospheric aerosol 

sources and sinks

AOD
Dust AOD

Smoke AOD

Angstrom exponent

Depolarization ratio

PM total
Speciation

AERONET
MAN

Lidar profiles 

Dual-pole 

radar
Passive microwave 

retrievals
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Observation constrained modeling (Contd)

Observations

Obs
uncertainty 

point by point

Model errors 

Model
Observation 

operator

Direct assimilation 
(e.g. AOD)

Inversion for 
emission

Identify key 
mechanisms for 

aerosols

Improvements to 
parameters [Johnson et al. 

2019] 
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Aerosol regional modeling
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Case study of dust storms in Arizona : Mile 
high wall of dust hits Phoenix
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Aerosol optical properties, dust concentrations, 
and transport  

A. Raman et al., 2014 

PM10
PM2.5
Wind MODIS AOD (Terra + Aqua)
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Aerosol trends over the dusty 
SouthWest

Change in TERRA AOD Standardized anomaly over a decade shows 

statistically significant decrease in anomalies over dusty hotspots and 

North American Monsoon (NAM) alley for pre-monsoon and monsoon.  

Dust NAM

PRM, MON, POM

A. Raman et al., 2016
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Modeling of Arizona dust storms

285 > 

310 

K

Conceptual Diagram of Cold Pool 

Formation and Movement 

WRF-Chem Simulated Cold Pool

(2011/07/05 8pm Local Time)

Strong SE winds 23-25ms-1 

and cold pool 

development !

WRF-Chem 1.2 km inner 

domain simulation of  

July 5, 2011 haboob 

- Decrease in 2m 

temperature

- Downbursts and 

surface divergence 

- Dust uplift

Lader, G., A. Raman et al., 2016 NOAA Tech memo NWS-WR 290 
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Modeling of Arizona dust storms (Contd)

HYSPLIT ensemble trajectories of  dust transported 

from Phoenix to Northwestern AZ. Also seen from 

CALIPSO aerosol classification
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Limitations and future direction

𝐹 = 𝐶𝑆𝑠𝑝 𝑢10 − 𝑢∗𝑡 𝑢10
2 𝑖𝑓 𝑢10 > 𝑢∗𝑡

S is the erodibility, sp is the fraction of  soil composition, u10 is the 10m wind 

speed, u*t is the threshold wind friction velocity, and C is a tunable constant

Missing dust sources  
using real time NDVI 

Lack of  
observations

Fine scale meteorology 
processes, dust impacts

Dual-pole radar reflectivities

and hydrometeor classification 

GEO+LEO, MISR 

plume height and 

spherical , non-spherical 

AOD

Convective scale  modeling, using wind 

probability instead of  wind speed



13

Black carbon  aerosols and uncertainties due to lack of  

observations

Improving co-emitted species such as 

Carbon-monoxide and Nitrogen Oxides to 

estimate Black carbon
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• Reductions in BC, PM2.5 (PM

2.5 μm or less in diameter)

emissions from on-road

diesel engines have not been

significant (e.g. Dallmann, T. R. and

Harley, R. A, 2010).

• Large uncertainties in BC

mixing state in aerosol

models.

Black carbon aerosols : Requirements for 
observations

Using co-emitted species



Co-emitted gases : Utility in source attribution 

15A. Raman and A.F. Arellano., 2017
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Co-emitted gases : Utility in Elemental carbon 
enhancement trends

2000-2007 2008-2015 2000-2007 2008-2015

A. Raman and A.F. Arellano., 2017
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Co-emitted gases : Utility in BC emission 
trends (Contd)

2000-2007 2008-2015 2000-2007 2008-2015

A. Raman and A.F. Arellano., 2017
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Take home messages

🔴 CO and NOx provide a novel pathway to improve observational 

coverage for sparsely measured , co-emitted aerosol species like 

Black Carbon.

🔴 Such approach can significantly improve characterization of  

black carbon aerosol sources from satellite retrievals due to 

ample measurements of  CO and NOx from space. 

🔴 Developing tracers for regional and sectoral CO in addition to 

total CO can improve source attribution and emission fluxes for 

black carbon aerosol in models. 
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Combining models and observations

Bouttier and Courtier, 1999

Djalalova.I et al. 2015 

Analog Ensemble Forecasting

https://link.springer.com/chapter/10.5822/978-94-024-0896-6_11#CR3
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Analog Ensemble Forecasting 

Delle Monache et al. 2011 

Delle Monache et al. 2006

Analog Ensemble 
Forecasting 

Analog Kalman 

Filter operates on 

the analog set of  

forecasts and the 

predicted errors  in 

the historical 

forecasts
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od
Predictor weights correspond to AOD-predictor 
correlation in the model

(a) (b) (c) (d)

(e) (f) (g) (h)

TPW PM10 PM2.5 WINDSPEED

Fig 5. Correlat ion values of AOD and predictors . (a) AOD Vs Total Precipitable Water, (b) AOD Vs PM10 ,  (c) AOD Vs PM2.5 , and (d) AOD Vs Horizont al windspeed at  

the surface collocated for Terra overpass t ime. (e) - (h) Sim ilar  to (a) - (d) but  for Aqua over pass t ime

A. Raman et al., in prep
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Analog Ensemble Forecasting : Results  
(a) (b) (c)

(d) (e) (f)

Fig 10. Mean bias (Model - Observat ion)  for June - august , 2012 from  WRF-Chem  (a,d), ANEN (b,e), and KFAN (c,d) for points 

collocated with  Terra (top) and Aqua (bot tom) respect ively. 
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Analog Ensemble Forecasting : Meteorology 
driven aerosols

JUN JUL AUG JUN JUL AUG

WE WE

CE CE

EA EA

SO SO

WRF-Chem

ANEN

KFAN

Aqua MODIS

WRF-Chem

ANEN

KFAN

TERRA MODIS

Fig 16. Boxplot  of AOD from  MODIS, WRF-Chem  , ANEN, and KFAN for June-August , 2012

Midline in the boxplot  represents the m edian of AOD , top and bot tom  lines of the box 

represents 25th and 75th percent ile, and t op and bot tom  lines outside t he box represents 

m axim um  and m inim um  values of AOD that  are not  out liers. The boxplots are shown for 

different  EPA regions and out liers are not  shown here. 
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Analog Ensemble Forecasting : Meteorology 
driven aerosols

Fig 15. RMSE of AOD for WRF-Chem , ANEN, and KFAN calculated with reference 

to Terra (left ) and Aqua (right ) ret r ievals for June, July, and August  of 2012. Points are grouped

into East  (EA), West  (WE), Southern (SO), and Cent ral (CE) regions based on EPA zones.     

(a) (b)

(c) (d)

(e) (f)

(g) (h)

RMSE for model and 

analog forecasts for 

summer for Western 

U.S
Terra Aqua

Change in RMSE is ~ 30% for June and July. Smaller reduction for 

August is due to the higher relative humidity (RH) during this period 

across U.S and the model errors in accurately predicting the total 

precipitable water and effects of  higher on RH on model AOD. 
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Take home messages

🔴 Analog Ensemble forecasting with a combination of  Kalman Filter 

provides improvement in AOD in seasons when AOD is mostly driven 

by wind and aerosol emissions. 

🔴 Despite the strong dependence on observations, analogs are heavily 

driven by the choice and quality of  the predictors which is evident 

from the case of  U.S East coast where during the month of  August, 

errors in model predictions of  precipitable water and wet scavenging 

prohibits improvement to AOD. 
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Aerosol global modeling  
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Implementing a process driven sea salt aerosol 
emission  parameterization in GEOS

Sea salt emissions =
𝑓 𝑊ℎ𝑖𝑡𝑒𝑐𝑎𝑝 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
f  (Size distribution of  sea 

salt particles)

Whitecap fraction :  Area of  the ocean surface covered by active wave breaking  

(Stage A or active ) and mature foam (stage b). 



National Aeronautics and Space Administration

Whitecap models : Wind dependence

Brumer et al., 2017

W = 𝑎𝑈10
𝑛

(e.g. Monahan, 1971)

𝑊 = 𝑎𝑢∗
𝑛

(e.g. Wu, 1988)

𝑊 = 𝑎 𝑈10 − 𝑏 𝑛

(Goddijn-Murphy et al. (2011))

W = 𝑓 𝑊𝑖𝑛𝑑 ℎ𝑖𝑠𝑡𝑜𝑟𝑦
(e.g. Callaghan et al., 2008)

At a given wind speed, W variability is ~1-2 orders of  magnitude 

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO 28



National Aeronautics and Space Administration

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

o Windsat W : 1o x 1o multi –frequency 

retrievals [Anguelova et al., 2019]

o 10 GHz includes more active W and 37 

GHz include fresh + mature (foam)  W

o GEOS-UMWM 

o 0.5o x 0.5o resolution runs for 

2014 replayed to MERRA-2

o Wind, sea-ice, air density input 

to UMWM from GEOS

Observation constrained modeling

29



National Aeronautics and Space Administration

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

W parameterization development

NDBC Wind/wave 

collocated stations 

Co-locate Windsat

Steepness, Re, 

dissipation rate, 

peak, air-sea 

temperature 

difference,

peak wave 

velocity

Model fitting

Sample GEOS-UMWM at NDBC

Test against 
independent 
Windsat W 

30
A. Raman and A. Darmenov , in prep



National Aeronautics and Space Administration

Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

Variability with wind speed

▪ Whitecap decreases for 

higher windspeed. 

▪ In order to capture this 

behavior in models, 

additional terms based on 

wind stress were added to 

the Seastate W model for 

wind speed > 20 m/s. 
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A. Raman and A. Darmenov , in prep
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Aerosols as a part of the Earth System : What do 
we need from models and observations? 

➢Observations of  vertical profiles of  aerosol concentrations 

and number distribution. 

➢Point by point data uncertainties from satellite retrievals. 

➢Ensemble Forecasting of  aerosols

➢Use of  aerosol products from satellites to improve model 

parameterizations in addition to direct assimilation of  

AOD [e.g. R.Kahn , 2020] 
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Extra slides
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Importance of meteorology for aerosol analogs
(a) (b)

(c) (d)

Fig.13 Skillscore for analog predict ions of AOD for June-August , 2012. Skill score is 

calculated here using Mean Square Errors in com parison with MODIS Terra and Aqua ret rievals. 

(a , b)  KFAN and ANEN AOD est imated with reference to WRF-Chem AOD 

Mean Square Errors for Terra overpass. (c, d)  sim ilar to (a, b) for Aqua overpass. 

  
  

Negative skill 

scores in the East 

coast:

- Strong 

correlation with 

meteorology, in 

particular 

precipitable water

- Impact of  wet 

scavenging 

processes. 
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Using PM2.5/CO    ratios in WRF-Chem to 
improve PM2.5 concentrations
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A. Raman et al. IGAC 

2014
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