130 research outputs found

    Triaxial collapse and virialisation of dark-matter haloes

    Full text link
    We reconsider the ellipsoidal-collapse model and extend it in two ways: We modify the treatment of the external gravitational shear field, introducing a hybrid model in between linear and non-linear evolution, and we introduce a virialisation criterion derived from the tensor virial theorem to replace the ad-hoc criterion employed so far. We compute the collapse parameters delta_c and Delta_v and find that they increase with ellipticity e and decrease with prolaticity p. We marginalise them over the appropriate distribution of e and p and show the marginalised results as functions of halo mass and virialisation redshift. While the hybrid model for the external shear gives results very similar to those obtained from the non-linear model, ellipsoidal collapse changes the collapse parameters typically by (20...50)%, in a way increasing with decreasing halo mass and decreasing virialisation redshift. We qualitatively confirm the dependence on mass and virialisation redshift of a fitting formula for delta_c, but find noticeable quantitative differences in particular at low mass and high redshift. The derived mass function is in good agreement with mass functions recently proposed in the literature.Comment: 9 pages, 9 figures, published in Astronomy and Astrophysics; slight modifications to match the published versio

    中央銀行行動と東アジア地域の政治経済分析 : 金融政策の主権と独立性

    Get PDF
    公共政策プログラム / Public Policy Program政策研究大学院大学 / National Graduate Institute for Policy Studies論文審査委員: 吉野 直行(主査), CHEY Hyoung-kyu, LEON-GONZALEZ, Roberto, 園部 哲史, 藤原 一平(慶應義塾大学大学院経済学研究科 教授

    Constraints on Ωm\Omega_\mathrm{m} and σ8\sigma_8 from the potential-based cluster temperature function

    Full text link
    The abundance of galaxy clusters is in principle a powerful tool to constrain cosmological parameters, especially Ωm\Omega_\mathrm{m} and σ8\sigma_8, due to the exponential dependence in the high-mass regime. While the best observables are the X-ray temperature and luminosity, the abundance of galaxy clusters, however, is conventionally predicted as a function of mass. Hence, the intrinsic scatter and the uncertainties in the scaling relations between mass and either temperature or luminosity lower the reliability of galaxy clusters to constrain cosmological parameters. In this article, we further refine the X-ray temperature function for galaxy clusters by Angrick et al., which is based on the statistics of perturbations in the cosmic gravitational potential and proposed to replace the classical mass-based temperature function, by including a refined analytic merger model and compare the theoretical prediction to results from a cosmological hydrodynamical simulation. Although we find already a good agreement if we compare with a cluster temperature function based on the mass-weighted temperature, including a redshift-dependent scaling between mass-based and spectroscopic temperature yields even better agreement between theoretical model and numerical results. As a proof of concept, incorporating this additional scaling in our model, we constrain the cosmological parameters Ωm\Omega_\mathrm{m} and σ8\sigma_8 from an X-ray sample of galaxy clusters and tentatively find agreement with the recent cosmic microwave background based results from the Planck mission at 1σ\sigma-level.Comment: 10 pages, 5 figures, 2 tables; accepted by MNRAS; some typos correcte

    On the derivation of an X-ray temperature function without reference to mass and the prediction of weak-lensing number counts from the statistics of Gaussian random fields

    Get PDF
    We present a novel approach for the derivation of the X-ray temperature function for galaxy clusters, which is based on the statistics of Gaussian random fields applied to the cosmic gravitational potential. It invokes only locally defined quantities so that no reference to the cluster's mass is made. To relate linear and non-linear potential and to take into account only structures that have collapsed, we include either spherical- or ellipsoidal-collapse dynamics and compare both resulting models to temperature functions derived from a numerical simulation. Since deviations from the theoretical prediction are found in the simulation for high redshifts, we develop an analytic model to include the effects of mergers in our formalism. We jointly determine the cosmological parameters Omega_m0 and sigma_8 from two different cluster samples for different temperature definitions and find good agreement with constraints from WMAP5. Introducing theoretically a refined detection definition based on the upcrossing criterion, we reformulate our analytic approach for 2D and use it to predict the number density of spurious detections caused by large-scale structure and shot noise in filtered weak-lensing convergence maps. Agreement with a numerical simulation is found at the expected level

    Statistics of gravitational potential perturbations: A novel approach to deriving the X-ray temperature function

    Full text link
    Context. While the halo mass function is theoretically a very sensitive measure of cosmological models, masses of dark-matter halos are poorly defined, global, and unobservable quantities. Aims. We argue that local, observable quantities such as the X-ray temperatures of galaxy clusters can be directly compared to theoretical predictions without invoking masses. We derive the X-ray temperature function directly from the statistics of Gaussian random fluctuations in the gravitational potential. Methods. We derive the abundance of potential minima constrained by the requirement that they belong to linearly collapsed structures. We then use the spherical-collapse model to relate linear to non-linear perturbations, and the virial theorem to convert potential depths to temperatures. No reference is made to mass or other global quantities in the derivation. Results. Applying a proper high-pass filter that removes large enough modes from the gravitational potential, we derive an X-ray temperature function that agrees very well with the classical Press-Schechter approach on relevant temperature scales, but avoids the necessity of measuring masses. Conclusions. TThis first study shows that and how an X-ray temperature function of galaxy clusters can be analytically derived, avoiding the introduction of poorly defined global quantities such as halo masses. This approach will be useful for reducing scatter in observed cluster distributions and thus in cosmological conclusions drawn from them.Comment: 10 pages, 5 figures, accepted for publication in A&A. Revision to match the published version. Equation 8 corrected. Notable changes in section 4 including new figure

    An analytic approach to number counts of weak-lensing peak detections

    Get PDF
    We develop and apply an analytic method to predict peak counts in weak-lensing surveys. It is based on the theory of Gaussian random fields and suitable to quantify the level of spurious detections caused by chance projections of large-scale structures as well as the shape and shot noise contributed by the background galaxies. We compare our method to peak counts obtained from numerical ray-tracing simulations and find good agreement at the expected level. The number of peak detections depends substantially on the shape and size of the filter applied to the gravitational shear field. Our main results are that weak-lensing peak counts are dominated by spurious detections up to signal-to-noise ratios of 3--5 and that most filters yield only a few detections per square degree above this level, while a filter optimised for suppressing large-scale structure noise returns up to an order of magnitude more.Comment: 9 pages, 5 figures, submitted to A&

    Towards explainable real estate valuation via evolutionary algorithms

    Get PDF
    Human lives are increasingly influenced by algorithms, which therefore need to meet higher standards not only in accuracy but also with respect to explainability. This is especially true for high-stakes areas such as real estate valuation. Unfortunately, the methods applied there often exhibit a trade-off between accuracy and explainability. One explainable approach is case-based reasoning (CBR), where each decision is supported by specific previous cases. However, such methods can be wanting in accuracy. The unexplainable machine learning approaches are often observed to provide higher accuracy but are not scrutable in their decision-making. In this paper, we apply evolutionary algorithms (EAs) to CBR predictors in order to improve their performance. In particular, we deploy EAs to the similarity functions (used in CBR to find comparable cases), which are fitted to the data set at hand. As a consequence, we achieve higher accuracy than state-of-the-art deep neural networks (DNNs), while keeping interpretability and explainability. These results stem from our empirical evaluation on a large data set of real estate offers where we compare known similarity functions, their EA-improved counterparts, and DNNs. Surprisingly, DNNs are only on par with standard CBR techniques. However, using EA-learned similarity functions does yield an improved performance

    Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover

    Get PDF
    In the Directed Feedback Vertex Set (DFVS) problem, one is given a directed graph G = (V,E) and wants to find a minimum cardinality set S ? V such that G-S is acyclic. DFVS is a fundamental problem in computer science and finds applications in areas such as deadlock detection. The problem was the subject of the 2022 PACE coding challenge. We develop a novel exact algorithm for the problem that is tailored to perform well on instances that are mostly bi-directed. For such instances, we adapt techniques from the well-researched vertex cover problem. Our core idea is an iterative reduction to vertex cover. To this end, we also develop a new reduction rule that reduces the number of not bi-directed edges. With the resulting algorithm, we were able to win third place in the exact track of the PACE challenge. We perform computational experiments and compare the running time to other exact algorithms, in particular to the winning algorithm in PACE. Our experiments show that we outpace the other algorithms on instances that have a low density of uni-directed edges
    corecore