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ABSTRACT

We apply an analytic method to predict peak counts in weak-lensing surveys. It is based on the theory of Gaussian random fields
and suitable to quantify the level of detections caused by chance projections of large-scale structures as well as the shape and shot
noise contributed by the background galaxies. A simple analytical recipe is given to compute the signal-to-noise distribution of those
detections. We compare our method to peak counts obtained from numerical ray-tracing simulations and find good agreement at the
expected level. The number of peak detections depends substantially on the shape and size of the filter applied to the gravitational
shear field. We confirm that weak-lensing peak counts are dominated by spurious detections up to signal-to-noise ratios of 3-5 and
that most filters yield only a few detections per square degree above this level, while a filter optimised for suppressing large-scale
structure noise returns up to an order of magnitude more. Galaxy shape noise and noise from large-scale structures cannot be treated
as two independent components since the two contributions add in a non-trivial way.
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1. Introduction

Wide-area surveys for weak gravitational lensing can be and
have been used for counting peaks in the shear signal, which
are commonly interpreted as the signature of sufficiently mas-
sive dark-matter halos. However, such detections are clearly con-
taminated by spurious detections caused by the chance super-
position of large-scale structures, and also by the shape- and
shot-noise contributions from the background galaxies used to
sample the foreground shear field. As a function of the peak
height, what is the contribution of genuine halos to these detec-
tions, and how much do the large-scale structure and the other
sources of noise contribute? In addition, the number of peaks
produced by the large-scale structure constitute a cosmological
signal which can be used as a cosmological probe together with
cluster counts. Can we predict this number without expensive
numerical simulations?

Given the power of lensing-peak number counts as a cos-
mological probe (Marian et al. 2009; Kratochvil et al. 2010;
Dietrich & Hartlap 2010), we address this question here after
applying a suitable analytic approach based on peak counts in
Gaussian random fields as laid out by Bardeen et al. (1986).
This extends van Waerbeke (2000), who studied the background
galaxy noise component alone. With respect to the latter work,
we give a detection definition more suitable for comparison
with observations and include the non-negligible contribution
of large-scale structures. It is reasonable to do so even though
at least the high peaks are caused by halos in the non-Gaussian
tail of the density fluctuations because the noise and large-scale
structure contributions to the filtered weak lensing maps remain
Gaussian, and thus at least their contribution to the counts can
be well described analytically. Peaks with the highest signal-
to-noise ratios are expected to be more abundant than predicted
based on Gaussian random fields.

Article published by EDP Sciences

Weak-lensing data are filtered to derive peak counts from
them. Several linear filters have been proposed and used in the
literature. They can all be seen as convolutions of the measured
shear field with filter functions of different shapes. Many shapes
have been proposed for different purposes (Schneider et al. 1998;
Schirmer et al. 2004; Maturi et al. 2005). One filter function,
called the optimal filter later on, was designed specifically to
suppress the contribution from large-scale structures by max-
imising the signal-to-noise ratio of halo detections against the
shear field of the large-scale structure.

We study three such filters here, with the optimal filter
among them. Results will differ substantially, arguing for a care-
ful filter choice if halo detections are the main goal of the appli-
cation. We compare our analytic results to a numerical simula-
tion and show that both agree at the expected level. We begin in
Sect. 2 with a brief summary of gravitational lensing as needed
here and describe filtering methods in Sect. 3. We present our an-
alytic method in Sect. 4 and compare it to numerical simulations
in Sect. 5, where we also show our main results. Conclusions are
summarised in Sect. 6. In Appendix A, we show predictions of
peak counts and the noise levels in them for several planned and
ongoing weak-lensing surveys.

2. Gravitational lensing

Isolated lenses are characterised by their lensing potential

2 Dy
6‘2 DdDS

() = D(Dyb, 7) dz, (D
where @ is the Newtonian gravitational potential and Dy 4 45 are
the angular-diameter distances between the observer and the
source, the observer and the lens, and the lens and the source,
respectively. The potential ¢ relates the angular positions 8 of
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the source and @ of its image on the observer’s sky through the
lens equation

B=0-Vy. )

Since sources such as distant background galaxies are much
smaller than the typical scale on which the lens properties
change and the angles involved are small, it is possible to lin-
earise Eq. (2) such that the induced image distortion is expressed
by the Jacobian

—92 )

1+ Jgi ’
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A= K)( —»

where k = V2i/2 is the convergence responsible for the isotropic
magnification of an image relative to its source, and g(f) =
v(@)/[1 — k()] is the reduced shear quantifying its distortion.
Here, y1 = (Y11 —¢¥22) /2 and y, = ¢ 1, are the two compo-
nents of the complex shear. Since the angular size of the source
is unknown, only the reduced shear can be estimated starting
from the observed ellipticity of the background sources,
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where ¢ is the intrinsic ellipticity of the source and the asterisk
denotes complex conjugation.

3. Measuring weak gravitational lensing
3.1. Weak lensing estimates

In absence of intrinsic alignments between background galax-
ies due to possible tidal interactions (Heavens & Peacock 1988;
Schneider & Bridle 2010), the intrinsic source ellipticities in
Eq. (4) average to zero in a sufficiently large source sample.
An appropriate and convenient measure for the lensing signal
on circular apertures is the weighted average over the tangential
component of the shear v, relative to the position 8 on the sky,
') = f 06, 0)0(6" - )W(6). (5)
The filter function Q determines the statistical properties of
the quantity I" and W describes the survey geometry. We shall
consider three filter functions here which will be described in
Sect. 3.2.

Data on gravitational lensing by a mass concentration can be
modeled by a signal s(0) = I't(0) described by its amplitude I'
and its radial profile 7, and a noise component n(f) with zero
mean, i.e.

Y:(0) = I't(0) + n(6) (6)
for the tangential shear. The variance of T in (5) is

kdk - N
ot = f — PaI0W)P, @

where Q(k) is the Fourier transform of the filter Q and f’g(k) =
Wz(k)Pg(k) is the effective power spectrum of the noise com-
ponent, i.e. the intrinsic noise power spectrum convolved with
a window function representing the frequency response of the
survey. Note that the contribution from cosmic variance is not
included in this definition since it is negligibly small. In our ap-
plication, the latter is a band-pass filter accounting for the finite
field of view of the survey (high-pass component) and the aver-
age galaxy separation (low-pass component). See Sect. 5.2 for its
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explicit expression. For complex sky coverage and especially for
small fields of view the adopted approximation would not hold
and a general treatment accounting for the full geometry W(k)
must be considered (see for e.g. Hivon et al. 2002).

In practical applications, I" is approximated by

- 1
) =~ " «(®)0(6; - ),

n

®)
l

where €;(0) is the tangential ellipticity with respect to 6 of a

galaxy located at the position 6;, which provides an estimate

for ;. Note that in our application we consider linear structures

only and therefore the weak lensing approximation is always sat-

isfied, i.e. g = y.

3.2. Weak lensing filters

Different filter profiles have been proposed in the literature de-
pending on their specific application in weak lensing. We adopt
three of them here which have been used so far to identify halo
candidates through weak lensing.

(1) The polynomial filter described by Schneider et al. (1998),

Opory(x) = 6—)“2(1 - ) H(1 - x) ©)
PN T2 ’

where the projected angular distance from the filter centre,
x = 0/8;, is expressed in units of the filter scale radius, 6,
and H is the Heaviside step function. This filter was origi-
nally proposed for cosmic-shear analysis but several authors
have used it also for dark matter halo searches (see for e.g.
Erben et al. 2000; Schirmer et al. 2004).

A filter optimised for halos with NFW density profile, ap-
proximating their shear signal with a hyperbolic tangent
(Schirmer et al. 2004),

)

Qunn() = (14 ¢+ ¢) " tanh(x/xo), (10)
where the two exponentials in parentheses are cut-offs im-
posed at small and large radii (a = 6, b = 150, ¢ = 50, and
d = 47) and x. is a parameter defining the filter-profile slope.
A good choice for the latter is x, = 0.1 as empirically shown
by Hetterscheidt et al. (2005).

The optimal linear filter introduced by Maturi et al. (2005)
which, together with the optimisation with respect to the
expected halo-lensing signal, optimally suppresses the con-
tamination due to the line-of-sight projection of large-scale

[P

structures (LSS),
with o' = f d*k
Pr(k)

7(k)

Py(k)
Here, 7(k) is the Fourier transform of the expected shear pro-
file of the halo and P¢(k) = P, + Py;n(k) is the complete noise
power spectrum including the linearly evolved LSS through
Pjin as well as the noise contributions from the intrinsic
source ellipticities and the shot noise by Py = 02/(2n,),
given their angular number density n, and the intrinsic ellip-
ticity dispersion 0. Note that for the filter construction we
use the linear LSS power spectrum instead of the non-linear
one. This is a kind of an implicit definition of a halo since
we assume that the difference between linear and non-linear
power spectrum is completely due to their formation. This
filter depends on parameters determined by physical quanti-
ties such as the halo mass and redshift, the galaxy number

3)

Oopi(k) = (11)
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Fig. 1. Overview of different weak-lensing filters. The left panel shows the three filters adopted here to be used on shear catalogues, while the
central and right panels show the corresponding filters to be used on convergence fields both in real and Fourier space, respectively. For illustration
only, the spatial frequencies in the right panel are rescaled such that the main filters peaks coincide.

density and the intrinsic ellipticity dispersion and not on an
arbitrarily chosen scale which has to be determined empiri-
cally through costly numerical simulations (e.g. Hennawi &
Spergel 2005). An application of this filter to the GaBoDS
survey (Schirmer et al. 2003) was presented in Maturi et al.
(2007), while a detailed comparison of these three filters
was performed by Pace et al. (2007) by means of numeri-
cal ray-tracing simulations. They found that the optimal lin-
ear filter given by Eq. (11) returns the halo sample with the
largest completeness (100% for masses M > 3x 10'* h™! M,
and ~50% for masses M ~ 2 x 10'“h~! M, for sources
at z; = 1) and the lowest number of spurious detections
caused by the LSS (<10% for a signal-to-noise threshold of
S/N ~5).

3.3. Weak lensing estimates and convergence

In order to simplify comparisons with numerical simulations, we
convert the quantity I" from Eq. (5) to a quantity involving the
convergence,

re = fd29’K(0’)U(|0' -0), (12)

where U is related to Q by

0O = 9—22 de’H'U(H') - U0 13)
0

(Schneider 1996) if the weight function U(6) is defined to be
compensated, i.e.

f WEUE) = 0. (14)
Equation (13) has the form of a Volterra integral equation of

the first kind which can be solved for U once Q is specified.
If lim,_,o Q(x)/x is finite, the solution is

0
/ 2 %
U0) = -0(0) —f o' 2 Q@) 15)
0
(Polyanin & Manzhirov 1998), which can be solved analytically
for the polynomial filter

Upoty(x) = ﬂi (1 —xz)(% -

2)H(1—x), (16)
and numerically for the hyperbolic-tangent filter of Eq. (10)
with an efficient recursive scheme over the desired radii 6. If
lim,_,o Q(x)/x = oo as in the case of the optimal filter, Eq. (15)
can be solved by introducing an exponential cut-off at small radii

to avoid the divergence. The correct solution is obtained if the
cut-off scale is close to the mean separation between the back-
ground galaxies, so that no information is lost. Alternatively,
Eq. (13) can be solved iteratively with respect to Q by

2
Uo(0) = -0(0), Un(9)=—Q(9)+§foed9'9'Un-1(9'). A7)

The iterative procedure is stopped once the difference U, (0) —
U,-1(0) is sufficiently small. After U(6) has been found, an ap-
propriate constant ¢ has to be added in order to satisfy the com-
pensation requirement, Eq. (14). It is given by

Omax

00U ®@).

(18)

c=-=
max

We show in Fig. 1 the resulting filter profiles to be used on
shear catalogues through Eq. (5) and their corresponding vari-
ants to be used on convergence fields with Eq. (12) both in
real and in Fourier space. All of them are band-pass filters and
the two of them designed for halo searches have larger ampli-
tudes at higher frequencies compared to the polynomial filter by
Schneider et al. (1998), where the halo signal is most signifi-
cant. This feature is particularly prominent for the optimal fil-
ter, which is additionally negative at low frequencies, where the
LSS signal dominates. These two features ensure the minimisa-
tion of the LSS contamination in halo searches.

4. Predicting weak lensing peak counts

Our analytic predictions for the number counts of weak-lensing
detections as a function of their signal-to-noise ratio are based
on modelling the analysed and filtered lensing data, resulting
from Eq. (12), as an isotropic and homogeneous Gaussian ran-
dom field. This is an extremely good approximation for the noise
and the LSS components, but not necessarily for the non-linear
structures such as sufficiently massive halos, as we shall discuss
in Sect. 5.3.

4.1. Statistics of Gaussian random fields

An n-dimensional random field F(r) assigns a set of random
numbers to each point r in an n-dimensional space. A joint prob-
ability function can be declared for m arbitrary points r; as the
probability to have field values between F(r;) and F(r;)+dF(r)),
with j = 1,...,m. For Gaussian random fields, the field it-
self, its derivatives, integrals and any linear combination thereof
are Gaussian random variables which we denote by y; with
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mean values (y;) and central deviations Ay; := y; — (y;), with
i = 1,...,p. Their joint probability function is a multivariate
Gaussian,

1

V(@2m)? det (M)

Py, ..., yp)dyi ... dy, = e 9dy;...dy, (19)

with the quadratic form

P
Q = % ”Z_l Ayi (M_l)ij ij, (20)

where M is the covariance matrix with elements M;; :=
(Ay;Ay ;). All statistical properties of a homogeneous Gaussian
random field with zero mean are fully characterised by the two-
point correlation function &(ry, r2) = £(lry — r2|) 1= (F(r)F(ry))
or equivalently its Fourier transform, the power spectrum P(k).
In our case, this is the sum of the power spectrum of the conver-
gence due to linearly evolved structures, Py ss(k), and the obser-
vational noise, P,(k), caused by the galaxies.

Since we are interested in gravitational-lensing quantities
such as the convergence x, we here consider two-dimensional
Gaussian random fields only with » := 6. We adopt the for-
malism of Bardeen et al. (1986), where F = k, ; = 0;F and
ij = 0;0,F denote the convergence field and its first and second
derivatives, respectively.

4.2. Definition of detections: a new up-crossing criterion

We define as detection any contiguous area of the field « which
exceeds a given threshold, ks, = S/N - o, determined by the
required signal-to-noise ratio, S/N, and the variance o of the
quantity [ (see Eq. (7)). This definition is widely used in sur-
veys for galaxy clusters or peak counts in weak-lensing surveys
and can easily be applied both to real data and Gaussian random
fields.

Each detection is delimited by its contour at the threshold
level k. If this contour is convex, it has a single point 6, called
up-crossing point, where the field is rising along the x-axis di-
rection only, i.e. where the field gradient has one vanishing and
one positive component (see the sketch for type-0 detections in
the lower panel of Fig. 2),

F(aup) = Kth, nl(gup) >0, 7]2(0up) =0. (21

Since we assume k to be a homogeneous and isotropic ran-
dom field, the orientation of the coordinate frame is arbitrary
and irrelevant. The conditions expressed by Eq. (21) define the
so-called up-crossing criterion which allows to identify the de-
tections and to derive their statistical properties, such as their
number counts, by associating their definition to the Gaussian
random field variables F, n; and 7,.

However, this criterion is prone to fail for low thresholds,
where detections tend to merge and the isocontours tend to devi-
ate from the assumed convex shape. This causes detection num-
bers to be overestimated at low cut-offs because each “penin-
sula” and “bay” of their contour (see type-1 in Fig. 2) would
be counted as one detection. We solve this problem by divid-
ing the up-crossing points into those with negative (red circles)
and those with positive (blue squares) curvature, {2, < 0 and
{2 > 0 respectively. In fact, for each detection, their difference
is one (type-1) providing the correct number count. The only ex-
ception is for those detections containing one or more “lagoons”
(type-2) since each of them decreases the detection count by one.
But since this is not a frequent case and occurs only at very low
cut-off levels, we do not consider this case here.
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Fig. 2. Weak lensing detection maps. The fop four panels show the seg-
mentation of a realistic weak-lensing S/N map for increasing thresholds:
0.1, 0.5, 1, and 2, respectively. The bottom panel sketches the three dis-
cussed detection types together with the points identified by the stan-
dard and the modified up-crossing criteria. Red circles and blue squares
correspond to up-crossing points for which the second field derivatives
are {» < 0and {» > 0, respectively.

4.3. The number density of detections

Once the relation between the detections and the Gaussian ran-
dom variables y = (x,71,12,{2) and their constraints from
Eq. (21) together with & < 0 or &y > 0 are defined, we
can describe their statistical properties through the multivariate
Gaussian probability distribution given by Eq. (19) with the co-
variance matrix

0'(2) 0 0 —0'%/2
_ 0 o-f/Z 0 0
M= 0 0 0'%/2 0 ’ (22)
—o-%/Z 0 0 30'%/8

as given by van Waerbeke (2000). Here, the o; are the moments
of the power spectrum P(k),

(23)
/e

k2j+1dk . .
o= [ PRwIowm

where P(k) = Piss + P, is the non-linear power spectrum of
the matter fluctuations (Peacock & Dodds 1996) combined with
the noise contribution by the background galaxies, W(k) is the
survey frequency response (see Sect. 5.2 for its explicit expres-
sion), and Q(k) is the Fourier transform of the filter adopted for
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the weak lensing analysis (see Sect. 3.2). The determinant of M

is (3c%0lo3 — 20%)/32 and Eq. (20) can explicitly be written as
0- 1 2_;]2 s 83,00 + 8Lako + 3k%05 ‘ 4
2\ ot 30%05 — 207!

Both k and 7, can be expanded into Taylor series around the
points 6, where the up-crossing conditions are fulfilled,

2 2
K(O) ~ ki + ) MO =0l MO Y L0 Oyl (25)
i=1 i=1

so that the infinitesimal volume element d«drn, can be written as
dkdn, = | detJ|d?r, where J is the Jacobian matrix,

J= Ok/0x1 Ok/0x> _(m m
Ona[0x1 O12/0x2 01 (o
and |detd| = [71{22]| since n; = 0. The number density of up-

crossing points at the threshold kg, with {»» < 0, and {», > 0, n~
and n* respectively, can thus be evaluated as

(26)

n*(kp) = F fdm fd,(zzlm,fzzl?’(K = km, 12 = 0,m1,422), (27)
0 0

where P(k,n1,12,{2) is the multivariate Gaussian defined by
Eq. (19) with p = 4, the correlation matrix (22), and the
quadratic form (24). Both expressions can be integrated analyt-
ically and their difference, nge((kn) = 1~ (k) — n'(kw), as ex-
plained in Sect. 4.2, returns the number density of detections 74e

above the threshold «y,,

R (2)2 i oK)

42132 \oo ) o9 20’%
Note how the dependence on o, drops out of the difference
n~ —n*, leading to a very simple result. This equation is much
less complex than Eqgs. (41), (42) by van Waerbeke (2000). It re-
turns the number of detection contours rather than the number of
peaks.

For completeness we report the number density estimate also

for the classical up-crossing criterion, Eq. (21) only, where the
constraint on the second derivative of the field, {», is not used,

! ﬂ)zﬁexp _ K
4\2m32 \oo ) oo 202
2 2 4
KihO™ KO
X{erf( o 1)+ 20—0)/ exp(— ”; 1)},
ooy o} VK a5y’

with y := /30503 — 207]. This number density converges to

the correct value nge for ki, — o0, i.e. large thresholds, because
erf(x) — 1 and exp(-x%)/x — 0 for x — oo. This reflects the
fact that, for large thresholds, the detection shapes become fully
convex and any issues with more complex shapes disappear.

Nger(Kin) = (28)

nup(th) =

(29)

5. Analytic predictions vs. numerical simulations

We now compare the number counts of detections predicted by
our analytic approach with those resulting form the analysis of
synthetic galaxy catalogues produced with numerical ray-tracing
simulations.

5.1. Numerical simulations

We use a hydrodynamical, numerical N-body simulation carried
out with the code GADGET-2 (Springel 2005). We briefly sum-
marise its main characteristics here and refer to Borgani et al.
(2004) for a more detailed discussion. The simulation represents
a concordance ACDM model, with dark-energy, dark-matter and
baryon density parameters Q, = 0.7, Q,, = 0.3 and Q, = 0.04,
respectively. The Hubble constant is Hy = 100 hkms~' Mpc™!
with & = 0.7, and the linear power spectrum of the matter-density
fluctuations is normalised to og = 0.8. The simulated box is a
cube with a side length of 192 h~! Mpc, containing 480° dark-
matter particles with a mass of 6.6 x 10° k™' My each and an
equal number of gas particles with 8.9 x 108 2=! M, each. Thus,
halos of mass 10'3 4~! M, are resolved into several thousands of
particles. The physics of the gas component includes radiative
cooling, star formation and supernova feedback, assuming zero
metallicity.

This simulation is used to construct backward light cones
by stacking the output snapshots from z = 1 to z = O.
Since the snapshots contain the same cosmic structures at dif-
ferent evolutionary stages, they are randomly shifted and ro-
tated to avoid repetitions of the same cosmic structures along
one line-of-sight. The light cone is then sliced into thick planes,
whose particles are subsequently projected with a triangular-
shaped-cloud scheme (TSC, Hockney & Eastwood 1988) on lens
planes perpendicular to the line-of-sight. We trace a bundle of
2048 x 2048 light rays through one light cone which start propa-
gating at the observer into directions on a regular grid of 4.9 de-
grees on each side. The effective resolution of this ray-tracing
simulation is of the order of 1’. The effective convergence and
shear maps obtained from the ray-tracing simulations are used
to lens a background source population according to Eq. (4).
Galaxies are randomly distributed on the lens plane at z = 1
with a number density of ny = 30 arcmin™? and have intrinsic
random ellipticities drawn from the distribution

_expll = €)/a?]
ple) = xo2[exp(1/o2) — 1]’

(30)

where o = 0.25 (for further detail, see Pace et al. 2007).

Synthetic galaxy catalogues produced in this way are finally
analysed with the aperture mass (Eq. (5)) evaluated on a reg-
ular grid of 512 x 512 positions covering the entire field-of-
view of the light cone. All three filters presented in Sect. 3.2
were used with three different scales: the polynomial filter with
rs = 2175, 5’5, and 11’, the hyperbolic-tangent filter with
rs = 5, 10’, and 20/, and the optimal filter with scale radii of
the cluster model set to ry = 17, 2/, and 4’. These scales are
chosen to sample angular scales typically used in literature.

For a statistical analysis of the weak-lensing detections and
their relation to the numerical simulations structures, see Pace
et al. (2007).

5.2. Accounting for the geometry of surveys: the window
function

Our analytic predictions for the number density of detections
accounts for the survey frequency response W(k) discussed in
Sect. 3.1. As already stated, this is a simplified approach and the
adopted full geometry W(k) should be considered (see for e.g.
Hivon et al. 2002) in case of complex sky masking, especially
if involving small fields of view. Thus, in our approach we con-
sider only an effective power spectrum P(k) = P(k)W?(k), where
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Fig. 3. Top panels: probability density function (PDF) measured from the synthetic galaxy catalogue, covering 24.4 square degrees, analysed with
all adopted filters and scales. The negative part of the PDF is well described by a Gaussian (solid lines). The 3-¢ error bars related to the Poissonian
uncertainty are shown. This shows how weak lensing signal-to-noise maps can be modelled as Gaussian random fields. Bottom panels: a similar
comparison was performed with the measured power spectrum and the predicted one based on the expected combined large scale structure and
noise power spectrums convolved with the weak lensing filter and the frequency response of the survey. For clarity, we only show the results for

the intermediate scales.

the frequency response, W(k), is the product of a high-pass fil-
ter suppressing the scales larger than the light cone’s side length
Ly =2n/ky = 4.9 deg,

2
Wi (k) = exp (——*) (31)
(note that k is in the denominator here), a low-pass filter imposed

by the average separation d = 2r/k, = ng]/ ? = 0718 between the
galaxies,

~ k?

Wg(k) = exp (—k—z), (32)
g

and a low-pass filter related to the resolution dp,ix = 057 used to

sample the sky with the quantity I of Eq. (8),

2k (kdpix)
kdyx "'\ V7 )

where Jj(x) is the cylindrical Bessel function of order one. The
latter function is a circular step function covering the same area
as a square-shaped pixel of size d,ix. The square shapes of the
field-of-view and the pixels could be better represented by the
product of two step functions in both the x- and y-direction,
but the low gain in accuracy does not justify the higher com-
putational cost. Finally, for the comparison with our numeri-
cal ray-tracing simulation, we have to account for its resolution
properties which act on the convergence power spectrum only
by convolving Py gs with a low-pass filter

Wix (k) = (33)

W2(k) = exp (—k—z) (34)
s k2 4

S
where kg = 27r/1 arcmin™! as discussed in Sect. 5.1.
The agreement of this simple recipe with the numerical sim-
ulation is shown in the bottom panels of Fig. 3, where we com-
pare the expected effective power spectrum convolved with the
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filter, P(k)U%(k) = P(k)W2(k)U*(k), with the one measured in
the numerical simulation. Apart from noise at large scales, only
small deviations at high frequencies are visible. Note that when
relating the detection threshold to the signal-to-noise ratio S/N
according to the variance given by Eq. (7) and «y, = S/N - o7, all
window functions mentioned are used except for Wpix, which, of
course, does not affect the variance.

5.3. Comparison with numerical simulations

Our analytic approach approximates the data as Gaussian ran-
dom fields, very well representing both noise and LSS contri-
butions to the weak lensing signal-to-noise ratio maps. In fact,
even if shear and convergence of LSS show non-Gaussianities
(Jain et al. 2000), weak lensing data are convolved with filters
broad enough to make their signal Gaussian. On the other hand,
this is not the case for non-linear objects such as galaxy clus-
ters whose non-Gaussianity remains after the filtering process.
Thus, particular care has to be taken when comparing the pre-
dicted number counts with real or simulated data by modelling
the non-linear structures, which is difficult and uncertain, or by
avoiding their contribution in the first place. We follow the latter
approach by counting the negative instead of the positive peaks
found in the convergence maps derived from galaxy catalogues.
In fact, massive halos contribute only positive detections in con-
trast to the LSS and other sources of noise which equally pro-
duce positive and negative detections with the same statistical
properties. Both, negative and positive peak counts, contain cos-
mologically relevant information. Apart from noise, the negative
peak counts are caused by linearly evolved LSS, while the differ-
ence between positive and negative counts is due to non-linear
structures. The mean density of negative peak counts can also be
used to statistically correct positive peak counts by the level of
spurious detections.

To verify these considerations, we tested if the resulting
weak lensing maps below the zero level behave as Gaussian
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Fig. 4. Number of negative peaks detected in the numerical simulation
(shaded area) compared to the prediction obtained with the proposed
method both with the original up-crossing criterion (dashed line) and
with the new blended up-crossing criterion (points with error bars). The
standard up-crossing criterion is a good approximation for high signal-
to-noise ratios but fails for lower S/N, which are well described by the
new version. Error bars represent the Poissonian noise of the number
counts of a one square degree survey while the shaded area shows the
Poisson noise in our numerical simulation covering 24.4 square degrees.

random fields, i.e. if the negative wing of their probability den-
sity function (hereafter PDF) is compatible with a Gaussian. The
result is shown in the top panels of Fig. 3 for all adopted filters
and scales. On one hand, the left side of the PDF is fitted by
a Gaussian whose mean is compatible with zero. On the other
hand, the largest PDF values show a slightly extended tail caused
by the non-linear objects present in the numerical simulation.
For illustrative purposes, we also show in the bottom panels of
Fig. 3 the expected filtered power spectra, P = P|WU/?, assumed
in Eq. (23), with those measured from the synthetic galaxy cata-
logues convolved with the three adopted filters, respectively. For
clarity, we show the results for the intermediate filter scales only
since the others are equivalent. All main features are well repro-
duced. Only at high frequencies the assumed power spectra drop
slightly more steeply than measured in the numerical simula-
tions. This might be one reason for the small deviations between
the numerical measurements and the analytical predictions. The
other one is sample variance.

A comparison of the original up-crossing criterion with the
new blended up-crossing criterion presented here is shown in
Fig. 4 together with the number counts of negative peaks ob-
tained from the numerical simulations. Only the result for the
optimal filter with ry = 1’ is shown for clarity. As expected, the
two criteria agree very well for high signal-to-noise ratios since
the detections are mostly of type-0, i.e. with a convex contour,
as shown in the lower left panel of Fig. 2, while the merging of
detections at lower signal-to-noise ratios is correctly taken into
account only by our new criterion.

Our analytic predictions of the number counts for all filters
and both positive and negative detection counts resulting from
the synthetic galaxies catalogue from the numerical simulation
are shown in Fig. 5. The high signal-to-noise ratio tail caused
by the nonlinear structures is present only in the positive detec-
tion counts, as expected. The agreement with the negative detec-
tions is within the 1-o error bars (representing the Poissonian
uncertainties for a one square degree survey) except for the

Schirmer et al. (2004) filter (tanh) and the Maturi et al. (2005)
filter (opt), with a scale of 5" and 4’ respectively, which are com-
patible only at a 2-0 level for S/N ~ 1. It is plausible that these
small deviations are caused by the small amount of non-
Gaussianities still present in the data and the small deviations
between the adopted and the actual signal power spectra (see
Fig. 3).

To additionally confirm the assumption that the contribu-
tions from both LSS and noise from the background galaxies
can be described by a Gaussian random field after the filtering
process, we modelled the positive peak counts as a combina-
tion of the peak statistics described in this work (used for the
negative peaks) and the halo mass function for the contribution
of highly non-linearly evolved halos that should be responsible
for the high signal-to-noise part and are not taken into account
by the Gaussian field statistics. The analytical prediction in this
case also shows good agreement with the results from the sim-
ulation. Detailed information on the method and results will be
the discussed in a future work.

We finally compare the contribution of the LSS and the noise
to the total signal by treating them separately. Their number
counts are plotted with dashed and dot-dashed lines in Fig. 5.
All filters show an unsurprisingly large number of detections
caused by the noise up to signal-to-noise ratios of 3 and a num-
ber of detections caused by the LSS increasing with the filter
scale except for the optimal filter, which always suppresses their
contribution to a negligible level. Thus, the LSS contaminates
halo catalogues selected by weak lensing up to signal-to-noise
ratios of 4-5 if its contribution is ignored in the filter definition.
Note that the total number of detections can be obtained only by
counting the peaks from the total signal, i.e. LSS plus noise, and
not by adding the peaks found in the two components separately,
because the blending of peaks is different for the two cases.

6. Conclusion

We have applied an analytic method for predicting peak counts
in weak-lensing surveys, based on the theory of Gaussian ran-
dom fields (Bardeen et al. 1986). Peaks are typically detected in
shear fields after convolving them with filters of different shapes
and widths. We have taken these into account by first filtering the
assumed Gaussian random field appropriately and then search-
ing for suitably defined peaks. On the way, we have argued for a
refinement of the up-crossing criterion for peak detection which
avoids biased counts of detections with low signal-to-noise ratio,
and implemented it in the analytic peak-count prediction. Peaks
in the non-linear tail of the shear distribution are underrepre-
sented in this approach because they are highly non-Gaussian,
but our method is well applicable to the prediction of spurious
counts, and therefore to the quantification of the background in
attempts to measure number densities of dark-matter halos. We
have compared our analytic prediction to peak counts in numeri-
cally simulated, synthetic shear catalogues and found agreement
at the expected level.
Our main results can be summarised as follows:

— The shape and size of the filter applied to the shear field have
a large influence on the contamination by spurious detec-
tions. For the optimal filter, the contribution by large-scale
structures is low on all filter scales, while they typically con-
tribute substantially for other filters. This confirms previous
results with a different approach (Maturi et al. 2005; Dietrich
et al. 2007; Pace et al. 2007).
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Fig. 5. Number of weak lensing peaks, shown as a function of the signal-to-noise ratio, predicted with the analytic method presented here for the
Schneider et al. (1998), poly, the Schirmer et al. (2004), tanh, and the Maturi et al. (2005), opt, filters from top to bottom, and increasing filter radii
from left to right as labeled in each panel. The number counts generated by the intrinsic galaxy noise alone, P,, and the LSS alone, Py s, are also

shown. Numbers refer to a survey of one square degree with a galaxy number density of n, = 30 arcmin ™!

and an intrinsic shear dispersion of

o = 0.25. The results are compared with the number counts of positive (labeled with +) as well as negative (labeled with —) peaks detected based
on the synthetic galaxy catalogues from the numerical simulation. Error bars and shaded areas refer to the Poissonian noise, i.e. the square root of

the number of detections. Error bars have the same meaning as in Fig. 4.

— Taken together, large-scale structure and galaxy noise con-
tribute the majority of detections up to signal-to-noise ratios
between 3-5. Only above this level, detections due to real
dark-matter halos begin dominating.

— Shape and shot noise due to the background galaxies can not
be predicted separately from the large-scale structure since
both affect another in a complex way.

— The optimal filter allows the detection of ~30-40 halos per
square degree at signal-to-noise ratios high enough for sup-
pressing all noise contributions. For the other filters, this
number is lower by almost an order of magnitude.

Our conclusions are thus surprisingly drastic: peak counts in
weak-lensing surveys are almost exclusively caused by chance
projections in the large-scale structure and by galaxy shape and
shot noise unless only peaks with high signal-to-noise ratios are
counted. With typical filters, only a few detections per square de-
gree can be expected at that level, while the optimal filter returns
up to an order of magnitude more. Nevertheless, the contamina-
tion level of the cluster number counts can be predicted and, after
all, it is a quantity containing valuable cosmological information
which can be used to tighten cosmological constraints as well.
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Appendix A: Forecast for different weak lensing
surveys

For convenience, we evaluate here the expected number density
of peak counts for S/N = 1,3,5 and for a collection of present
and future weak-lensing surveys with different intrinsic elliptic-
ity dispersion, o, and galaxy number density, n,, per arcmin’.
To give typical values, we assumed for all of them a square-
shaped field of view, a uniform galaxy number density and no
gaps for two main reasons. First, their fields-of-view are typ-
ically very large and thus do not affect the frequencies rele-
vant for our evaluation. Second, the masking of bright objects
can be done in many different ways which cannot be consid-
ered in this paper in any detail. Finally we fixed the sampling
scale, described by Eq. (33), to be 5 times smaller than the typ-
ical filter scale in order to avoid undersampling, i.e. such that
the high frequency cut-off is imposed by the filters themselves.
For each filter, we used three different scales, namely Qpoly:
scale-1 = 2!75, scale-2 = 5!5, scale-3 = 11’; Qnn: scale-1 =5/,
scale-2 = 10/, scale-3 = 20'; Qop: scale-1 = 10" M, and
scale-2 = 5 X 10" Mo. Qguss (Gaussian FWHM): scale-1 =
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Table A.1. Expected number counts of peak detections per square degree for different weak-lensing surveys, filters and signal-to-noise ratios

cut-off.
Pan-STARRS Qpnly Qtanh ant anuss
0e=03,n,=5 1 3 5 1 3 5 1 3 5 1 3 5
scale-1 207.7 8.127  0.002 | 252.7 8.824 0.002 | 186.3 6.243 0.001 3125 131.1  0.042
scale-2 5149 282 0.001 61.8 3214 0.002 | 62.69 3.576 0.002 989.6 3893 0.011
scale-3 1245 1.258  0.002 14.02 1.518 0.003 - - - 1732 7.82  0.003
DES Qpnly Qtanh ant anuss
oe=03,n,=10 1 3 5 1 3 5 1 3 5 1 3 5
scale-1 206.6  9.55 0.004 | 2489 1098 0.004 | 288.8 12.72 0.005 3593 1445 0.043
scale-2 50.09 4.178 0.005 | 56.87 5.112 0.008 | 95.6  8.325 0.012 1047  41.67 0.012
scale-3 11.67 2339 0.0174 | 11.92 2.847 0.030 - — — 169.8  9.807 0.006
CFHTLS only Qtanh Qopt anuss
o.=03,n,=20 1 3 5 1 3 5 1 3 5 1 3 5
scale-1 206.6  9.907 0.004 | 249.6 1148 0.004 324 14.12 0.005 3971  151.6  0.041
scale-2 49.76 4545 0.007 | 55.86 5.61 0.010 | 1045 9.519 0.015 1085  42.15 0.012
scale-3 1149 2.622  0.025 11.51 3.166 0.044 - - - 169.7 10.28  0.007
Subaru only Qtanh Qopt anuss
o.=03,n, =30 1 3 5 1 3 5 1 3 5 1 3 5
scale-1 198.5 1622  0.020 | 219.5 21.51 0.038 | 603.2 4299 0.04045 | 4110 160.9 0.046
scale-2 4484 1082 0.117 | 4297 1332 0.237 | 172.8 29.81 0.1642 1070  50.42  0.021
scale-3 9.406 6.321  0.528 | 7.857 6.457 0.807 - - - 151.6  19.14 0.057
EUCLID Qpnly Qtanh ant anuss
oe=03,n, =40 1 3 5 1 3 5 1 3 5 1 3 5
scale-1 1943 20.01 0.039 | 2063 2729 0.088 | 730.9 58.61 0.070 4189 1655 0.048
scale-2 4264 1425 0.295 | 3854 168  0.591 | 197.7 40.75 0.321 1062 5499 0.027
scale-3 8.653 7.642 1.104 | 6873 7.282 1.514 - — - 143.6  24.19 0.127
LSST Qpnly Qtanh ant anuss
oe=0.22,n, =50 1 3 5 1 3 5 1 3 5 1 3 5
scale-1 174.8 4242 0463 | 156.8 56.13 1333 | 1206 138 0.334 4169  187.7  0.070
scale-2 345 2813 3464 | 26.15 2681 5218 | 269.2 95.09 2.198 991.5 82 0.104
scale-3 6.403 1032 4964 | 4519 8.139 4.889 - — - 113.5 48.96 1.688
SNAP only Qtanh Qopt anuss
oe=0.3,n, =100 1 3 5 1 3 5 1 3 5 1 3 5
scale-1 172.6 4542 05824 | 1525 5933 1.664 | 1322 148.6  0.3481 4287  190.2  0.069
scale-2 33.73 2939 4.133 | 25.22 2743 6.009 | 281.6 102.2 2.494 9913 8532 0.117
scale-3 6.218 1041 5403 | 4.355 8.1 5.19 - - - 110.8 51.68 2.083

scale-2 = 2/, scale-3 = 5’. The results are shown in Table A.1 to-
gether with the number counts obtained with a simple Gaussian
filter, usually used together with the Kaiser & Squires shear in-
version algorithm (Kaiser & Squires 1993).
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