645 research outputs found

    Genebank ‐ in vitro propagation of potato and sweetpotato. CIP‐SOP056 V 3.0

    Get PDF
    This procedure describes the in vitro multiplication of potato and sweetpotato germplasm for international and national germplasm distribution, as well as, in vitro conservation, phytosanitary, and cryopreservation activities

    Ultra-heavy cosmic rays: Theoretical implications of recent observations

    Get PDF
    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element

    Vortex mass in a superfluid at low frequencies

    Full text link
    An inertial mass of a vortex can be calculated by driving it round in a circle with a steadily revolving pinning potential. We show that in the low frequency limit this gives precisely the same formula that was used by Baym and Chandler, but find that the result is not unique and depends on the force field used to cause the acceleration. We apply this method to the Gross-Pitaevskii model, and derive a simple formula for the vortex mass. We study both the long range and short range properties of the solution. We agree with earlier results that the non-zero compressibility leads to a divergent mass. From the short-range behavior of the solution we find that the mass is sensitive to the form of the pinning potential, and diverges logarithmically when the radius of this potential tends to zero.Comment: 4 page

    Genebank ‐ propagacion in vitro de papa y camote. CIP - SOP056 V 3.0

    Get PDF
    Este procedimiento describe la multiplicacion de germoplasma in vitro de papa y camote para la distribucion internacional, nacional y dentro del CIP, asi como para actividades de conservacion in vitro, fitosanidad y crioconservacio

    Interpolating between the Bose-Einstein and the Fermi-Dirac distributions in odd dimensions

    Full text link
    We consider the response of a uniformly accelerated monopole detector that is coupled to a superposition of an odd and an even power of a quantized, massless scalar field in flat spacetime in arbitrary dimensions. We show that, when the field is assumed to be in the Minkowski vacuum, the response of the detector is characterized by a Bose-Einstein factor in even spacetime dimensions, whereas a Bose-Einstein as well as a Fermi-Dirac factor appear in the detector response when the dimension of spacetime is odd. Moreover, we find that, it is possible to interpolate between the Bose-Einstein and the Fermi-Dirac distributions in odd spacetime dimensions by suitably adjusting the relative strengths of the detector's coupling to the odd and the even powers of the scalar field. We point out that the response of the detector is always thermal and we, finally, close by stressing the apparent nature of the appearance of the Fermi-Dirac factor in the detector response.Comment: RevTeX, 7 page

    Bragg spectroscopy with an accelerating Bose-Einstein condensate

    Full text link
    We present the results of Bragg spectroscopy performed on an accelerating Bose-Einstein condensate. The Bose condensate undergoes circular micro-motion in a magnetic TOP trap and the effect of this motion on the Bragg spectrum is analyzed. A simple frequency modulation model is used to interpret the observed complex structure, and broadening effects are considered using numerical solutions to the Gross-Pitaevskii equation.Comment: 5 pages, 3 figures, to appear in PRA. Minor changes to text and fig

    Studies of bosons in optical lattices in a harmonic potential

    Full text link
    We present a theoretical study of bose condensation and specific heat of non-interacting bosons in finite lattices in harmonic potentials in one, two, and three dimensions. We numerically diagonalize the Hamiltonian to obtain the energy levels of the systems. Using the energy levels thus obtained, we investigate the temperature dependence, dimensionality effects, lattice size dependence, and evolution to the bulk limit of the condensate fraction and the specific heat. Some preliminary results on the specific heat of fermions in optical lattices are also presented. The results obtained are contextualized within the current experimental and theoretical scenario.Comment: Revised version, References updated, a new section on Fermions added, 14 pages, 16 figure

    Hydrodynamic modes of a 1D trapped Bose gas

    Full text link
    We consider two regimes where a trapped Bose gas behaves as a one-dimensional system. In the first one the Bose gas is microscopically described by 3D mean field theory, but the trap is so elongated that it behaves as a 1D gas with respect to low frequency collective modes. In the second regime we assume that the 1D gas is truly 1D and that it is properly described by the Lieb-Liniger model. In both regimes we find the frequency of the lowest compressional mode by solving the hydrodynamic equations. This is done by making use of a method which allows to find analytical or quasi-analytical solutions of these equations for a large class of models approaching very closely the actual equation of state of the Bose gas. We find an excellent agreement with the recent results of Menotti and Stringari obtained from a sum rule approach.Comment: 15 pages, revtex, 1 figure

    Atom Lasers, Coherent States, and Coherence:II. Maximally Robust Ensembles of Pure States

    Full text link
    As discussed in Wiseman and Vaccaro [quant-ph/9906125], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρss\rho_{ss}, is more natural. In the preceding paper we concentrated upon whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ\chi of the bosons in the laser mode, and the excess phase noise ν\nu. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0\nu=\chi=0), the most robust states are coherent states. As the phase noise ν\nu or phase dispersion χ\chi is increased, the most robust states become increasingly amplitude-squeezed. We find scaling laws for these states. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR states having a well-defined coherent amplitude. This lends support to the idea that robust PR ensembles are the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular, for which phase dispersion due to self-interactions is expected to be large.Comment: 16 pages, 9 figures included. To be published in Phys. Rev. A, as Part II of a two-part paper. The original version of quant-ph/9906125 is shortly to be replaced by a new version which is Part I of the two-part paper. This paper (Part II) also contains some material from the original version of quant-ph/990612
    corecore