4,577 research outputs found
On the mutual effect of ion temperature gradient instabilities and impurity peaking in the reversed field pinch
The presence of impurities is considered in gyrokinetic calculations of ion
temperature gradient (ITG) instabilities and turbulence in the reversed field
pinch device RFX-mod. This device usually exhibits hollow Carbon/Oxygen
profiles, peaked in the outer core region. We describe the role of the
impurities in ITG mode destabilization, and analyze whether ITG turbulence is
compatible with their experimental gradients.Comment: 19 pages, 9 figures, accepted for publication in Plasma Phys.
Control. Fusio
Understanding the core density profile in TCV H-mode plasmas
Results from a database analysis of H-mode electron density profiles on the
Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the
logarithmic electron density gradient increases with collisionality. By
contrast, usual observations of H-modes showed that the electron density
profiles tend to flatten with increasing collisionality. In this work it is
reinforced that the role of collisionality alone, depending on the parameter
regime, can be rather weak and in these, dominantly electron heated TCV cases,
the electron density gradient is tailored by the underlying turbulence regime,
which is mostly determined by the ratio of the electron to ion temperature and
that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch
can significantly contribute to the density peaking. Qualitative agreement
between the predicted density peaking by quasi-linear gyrokinetic simulations
and the experimental results is found. Quantitative comparison would
necessitate ion temperature measurements, which are lacking in the considered
experimental dataset. However, the simulation results show that it is the
combination of several effects that influences the density peaking in TCV
H-mode plasmas.Comment: 23 pages, 12 figure
Diagnostic value of transvaginal 'tenderness-guided' ultrasonography for the prediction of location of deep endometriosis
BACKGROUND: The aim was to evaluate the diagnostic accuracy of transvaginal tenderness-guided ultrasonography in the identification of location of deep endometriosis. METHODS: Consecutive women scheduled for surgery in our Department for clinically suspected endometriosis were included in this prospective study. All women underwent modified transvaginal ultrasonography using a stand-off in the week before surgery, which also evaluated the painful sites evocated by a gentle pressure of the probe. Five locations of deep endometriosis were considered: vaginal walls, rectovaginal septum, rectosigmoid involvement, uterosacral ligaments and anterior compartment (anterior pouch and/or bladder). Sensitivity, specificity and likelihood ratios (LR1/2) were calculated with 95% confidence intervals (CIs). RESULTS: We included 88 women; surgery associated with histopathological evaluation revealed deep endometriosis in different pelvic locations in 72 patients. With respect to the vaginal walls, transvaginal ultrasonography had a sensitivity of 91% (95% CI, 79 –97%), specificity of 89% (95% CI, 81–93%), an LR1 of 8.2 and an LR2 of 0.09. For endometriosis of rectovaginal septum, transvaginal ultrasonography had a sensitivity of 74% (95% CI, 64–80%), specificity of 88% (95% CI, 4–8%), an LR1 of 6.2 and an LR2 of 0.3. For other locations, the sensitivity was lower (ranging from 67% to 33%) with a comparable specificity. CONCLUSIONS: This technique shows a high specificity and sensitivity in the detection of vaginal and rectovaginal endometriosis. Good specificity associated with a lower sensitivity was obtained in the diagnosis of deep endometriosis of uterosacral ligaments, rectosigmoid involvement or anterior deep endometriosis
A transformers-based approach for fine and coarse-grained classification and generation of MIDI songs and soundtracks
Music is an extremely subjective art form whose commodification via the recording industry in the 20th century has led to an increasingly subdivided set of genre labels that attempt to organize musical styles into definite categories. Music psychology has been studying the processes through which music is perceived, created, responded to, and incorporated into everyday life, and, modern artificial intelligence technology can be exploited in such a direction. Music classification and generation are emerging fields that gained much attention recently, especially with the latest discoveries within deep learning technologies. Self attention networks have in fact brought huge benefits for several tasks of classification and generation in different domains where data of different types were used (text, images, videos, sounds). In this article, we want to analyze the effectiveness of Transformers for both classification and generation tasks and study the performances of classification at different granularity and of generation using different human and automatic metrics. The input data consist of MIDI sounds that we have considered from different datasets: sounds from 397 Nintendo Entertainment System video games, classical pieces, and rock songs from different composers and bands. We have performed classification tasks within each dataset to identify the types or composers of each sample (fine-grained) and classification at a higher level. In the latter, we combined the three datasets together with the goal of identifying for each sample just NES, rock, or classical (coarse-grained) pieces. The proposed transformers-based approach outperformed competitors based on deep learning and machine learning approaches. Finally, the generation task has been carried out on each dataset and the resulting samples have been evaluated using human and automatic metrics (the local alignment)
AIF-1 gene does not confer susceptibility to Behçet's disease: Analysis of extended haplotypes in Sardinian population
Background BehcEet's disease (BD) is a polygenic immune-mediated disorder characterized by a close association with the HLA-B∗51 allele. The HLA region has a strong linkage disequilibrium (LD) and carries several genetic variants (e.g. MIC-A, TNF-α genes) identified as associated to BD because of their LD with HLA-B∗51. In fact, the HLA-B∗51 is inherited as part of extended HLA haplotypes which are well preserved in patients with BD. Sardinian population is highly differentiated from other Mediterranean populations because of a distinctive genetic structure with very highly preserved HLA haplotypes. Patients and methods In order to identify other genes of susceptibility to BD within the HLA region we investigated the distribution of human Allograft Inflammatory Factor-1 (AIF-1) gene variants among BD patients and healthy controls from Sardinia. Six (rs2736182; rs2259571; rs2269475; rs2857597; rs13195276; rs4711274) AIF-1 single nucleotide polymorphisms (SNPs) and related extended haplotypes have been investigated as well as their LD within the HLA region and with HLA-B∗51. Overall, 64 BD patients, 43 HLA-B∗51 positive healthy controls (HC) and 70 random HC were enrolled in the study. Results HLA-B∗51 was the only allele with significantly higher frequency (pc = 0.0021) in BD patients (40.6%) than in HC (9.8%). The rs2259571TAIF-1 variant had a significantly reduced phenotypic, but not allelic frequency in BD patients (72.1%; pc = 0.014) compared to healthy population (91.3%). That was likely due to the LD between HLA-B∗51 and rs2259571G(pc= 9E-5), even though the rs2259571Gdistribution did not significantly differ between BD patients and HC. Conclusion No significant difference in distribution of AIF-1 SNPs haplotypes was observed between BD patients and HC and between HLA-B∗51 positive BD patients and HLA-B∗51 positive HC. Taken together, these results suggest that AIF-1 gene is not associated with susceptibility to BD in Sardinia
Expression analysis of HLA-E and NKG2A and NKG2C receptors points at a role for natural killer function in ankylosing spondylitis
Background. Ankylosing Spondylitis (AS) is a complex chronic inflammatory disease strongly associated with the majority of HLA-B27 alleles. HLA-E are non-classical MHC class I molecules that specifically interact with the natural killer receptors NKG2A (inhibitory) and NKG2C (activating), and have been recently proposed to be involved in AS pathogenesis. Objectives: To analyze the expression of HLA-E and the CD94/NKG2 pair of receptors in HLA-B27 positive AS patients and healthy controls (HC) bearing the AS-associated, B*2705 and the non-AS-associated, B*2709 allele. Methods: The level of surface expression of HLA-E molecules on CD14 positive peripheral blood mononuclear cell was evaluated in 21 HLA-B*2705 patients with AS, 12 HLA-B*2705 HC, 12 HLA-B*2709 HC and 6 HLA-B27 negative HC, using the monoclonal antibody MEM-E/08 by quantitative cytofluorimetric analysis. The percentage and density of expression of HLA-E ligands NKG2A and NKG2C were also measured on CD3-CD56+ NK cells. Results. HLA-E expression in CD14 positive cells was significantly higher in AS patients (587.0 IQR 424-830) compared to B*2705 HC (389 IQR 251.3-440.5, p=0.0007), B*2709 HC (294.5 IQR 209.5-422, p=0.0004) and HLA-B27 negative HC (380 IQR 197.3-515.0, p=0.01). A higher number of NK cells expressing NKG2A compared to NKG2C was found in all cohort analysed as well as a higher cell surface density. Conclusion: The higher surface level of HLA-E molecules in AS patients compared to HC, concurrently with a prevalent expression of NKG2A, suggests that the crosstalk between these two molecules might play a role in AS pathogenesis accounting for the previously reported association between HLA-E and AS
Recent advances on innovative bioactive glass-hydroxyapatite composites for bone tissue applications: Processing, mechanical properties, and biological performance
New Hydroxyapatite-Bioactive Glass composites, xHA-(1-x)BG (x = 25, 50, and 75 wt %), are developed using HA and BGMS10 glass powders co-milled up to 2 h prior to Spark Plasma Sintering (SPS). Ball milling (BM) promoted the consolidation of HA-rich powders, whereas hindered the densification of 25HA-75BG samples. HA crystallite size is reduced from > 200 nm (unmilled) to 60 (x = 25 %) or 88 nm (x = 75 %) when using 2 h milled mixtures. Glass crystallization occurred in 75HA-25BG samples processed by SPS at 950 °C: a negligeable effect in the amount of the residual amorphous phase (12.3–13.3 wt %) is produced by BM, while changes are observed in the relative content of crystalline phases, with SiO2 increases from 8.5 to 13.1 wt %, whereas α- and β-CaSiO3 correspondingly decrease. Superior Young's modulus and Vickers hardness (130 GPa and 726, respectively) are obtained in HA rich products. Biological tests evidenced that the milling treatment does not determine negative consequences on cells viability
Combustion synthesis and spark plasma sintering of apatite-tricalcium phosphate nanocomposites
A processing route consisting of Spark Plasma Sintering (SPS) of precursor powders prepared by Solution Combustion Synthesis (SCS) is proposed for the first time for the fabrication of bulk nanostructured biphasic calcium phosphates. The apatite phase content in the product obtained by SCS was maximized using a fuel to oxidizer ratio of 1.1. After a post-synthesis air-annealing step conducted a 700 °C/3 h, powders consisted of 83 wt.% of carbonated apatite, with average crystallite size less than 70 nm, and β- and α-TCP (tricalcium phosphate), as secondary phases. Detailed structural analyses evidenced that the original nanostructure was retained after sintering at 900 °C, with the obtainment of nearly 91% dense, apatite-rich, biphasic bioceramics, with grains size of about 100 nm. The developed nanostructured biphasic material is expected to possess a higher resorption rate than standard microcrystalline hydroxyapatite, which makes it preferable for bone tissue regeneration
- …