76 research outputs found

    Association Analysis of ULK1 with Crohn's Disease in a New Zealand Population

    Get PDF
    The gene ULK1 is an excellent candidate for Crohn's disease (CD) due to its role in autophagy. A recent study provided evidence for the involvement of ULK1 in the pathogenesis of CD (Henckaerts et al., 2011). We attempted to validate this association, using a candidate gene SNP study of ULK1 in CD. We identified tagging SNPs and genotyped these SNPs using the Sequenom platform in a Caucasian New Zealand dataset consisting of 406 CD patients and 638 controls. In this sample, we were able to demonstrate an association between CD and several different ULK1 SNPs and haplotypes. Phenotypic analysis showed an association with age of diagnosis 17–40 years and inflammatory behaviour. The findings of this study provide evidence to suggest that genetic variation in ULK1 may play a role in interindividual differences in CD susceptibility and clinical outcome

    DNase1: No Association with Crohn's Disease in a New Zealand Population

    Get PDF
    DNase1 has been implicated in a number of immune disorders and is an excellent candidate gene for Crohn's disease (CD). We investigated whether DNase1 SNPs rs1053874 and rs8176938 were associated with CD in a well-characterized New Zealand dataset consisting of 447 cases and 716 controls. Furthermore, we measured serum DNase1 activity levels in a number of CD patients and controls. We did not find any evidence of association for either DNase1 genetic variation or DNase1 activity levels with CD. The lack of association indicates that DNase1 does not play a significant role in predisposing to CD in the New Zealand population

    IL23R and IL12B SNPs and Haplotypes Strongly Associate with Crohn's Disease Risk in a New Zealand Population

    Get PDF
    DNA samples from 339 Crohn's disease (CD) and 407 randomly selected controls from the Auckland (New Zealand) IBD project, were genotyped for five common single nucleotide polymorphisms in IL-23R (rs11805303, rs7517847, rs1343151, rs11209026, and rs10889677) and two in IL-12B (rs1363670 and rs6887695). While the IL-12B variants did not show an overall association and other IL23R variants led to minor changes in the risk of CD, rs1343151 and/or rs7517847 variants in the IL-23R gene strongly reduced the risk of developing CD at both allelic and genotype levels. A significantly decreased risk of first diagnosis of childhood CD was observed in individuals carrying the A allele of rs1343151, or between 17–40 y in individuals carrying the G allele in rs7517847 of IL-23R. A significantly decreased risk of ileocolonic or structuring disease was observed in individuals carrying the A allele in either rs11209026 or rs1343151, or the G allele in rs7517847 of IL-23R, and when such individuals did develop the disease, they were unlikely to require a bowel resection. Certain haplotypes very strongly modified risk. There was evidence for interactions of IL-23R variants with the NOD2 wild-type (d/d) genotype. Down-regulating the function of the IL-23R gene may decrease CD risk in the normal population

    Risk Prediction of the Diabetes Missing Million: Identifying Individuals at High Risk of Diabetes and Related Complications

    Get PDF
    Early diagnosis and effective management of type 2 diabetes (T2D) are crucial in reducing the risk of developing life-changing complications such as heart failure, stroke, kidney disease, blindness and amputation, which are also associated with significant costs for healthcare providers. However, as T2D symptoms often develop slowly it is not uncommon for people to live with T2D for years without being aware of their condition—commonly known as the undiagnosed missing million. By the time a diagnosis is received, many individuals will have already developed serious complications. While the existence of undiagnosed diabetes has long been recognised, wide-reaching awareness among the general public, clinicians and policymakers is lacking, and there is uncertainty in how best to identify high-risk individuals. In this article we have used consensus expert opinion alongside the available evidence, to provide support for the diabetes healthcare community regarding risk prediction of the missing million. Its purpose is to provide awareness of the risk factors for identifying individuals at high, moderate and low risk of T2D and T2D-related complications. The awareness of risk predictors, particularly in primary care, is important, so that appropriate steps can be taken to reduce the clinical and economic burden of T2D and its complications

    A Narrative Review of Chronic Kidney Disease in Clinical Practice: Current Challenges and Future Perspectives

    Get PDF
    Chronic kidney disease (CKD) is a complex disease which affects approximately 13% of the world's population. Over time, CKD can cause renal dysfunction and progression to end-stage kidney disease and cardiovascular disease. Complications associated with CKD may contribute to the acceleration of disease progression and the risk of cardiovascular-related morbidities. Early CKD is asymptomatic, and symptoms only present at later stages when complications of the disease arise, such as a decline in kidney function and the presence of other comorbidities associated with the disease. In advanced stages of the disease, when kidney function is significantly impaired, patients can only be treated with dialysis or a transplant. With limited treatment options available, an increasing prevalence of both the elderly population and comorbidities associated with the disease, the prevalence of CKD is set to rise. This review discusses the current challenges and the unmet patient need in CKD

    Metallothionein genes: no association with Crohn's disease in a New Zealand population

    Get PDF
    Metallothioneins (MTs) are excellent candidate genes for Inflammatory Bowel Disease (IBD) and have previously been shown to have altered expression in both animal and human studies of IBD. This is the first study to examine genetic variants within the MT genes and aims to determine whether such genetic variants have an important role in this disease. 28 tag SNPs in genes MT1 (subtypes A, B, E, F, G, H, M, X), MT2, MT3 and MT4 were selected for genotyping in a well-characterized New Zealand dataset consisting of 406 patients with Crohn's Disease and 638 controls. We did not find any evidence of association for MT genetic variation with CD. The lack of association indicates that genetic variants in the MT genes do not play a significant role in predisposing to CD in the New Zealand population

    Genetic adult lactase persistence is associated with risk of Crohn's Disease in a New Zealand population

    Get PDF
    Background: Mycobacterium avium subspecies paratuberculosis (MAP) is an infective agent found in ruminants and milk products, which has been suggested to increase the risk of gastrointestinal inflammation in genetically susceptible hosts. It is hypothesized that lactase persistence facilitates exposure to such milk products increasing the likelihood of adverse outcomes. Individuals either homozygous or heterozygous for the T allele of DNA variant, rs4988235, located 14kb upstream from the LCT locus, are associated with having lactase persistence. The aim of this study was to determine whether lactase persistence as evident by the T allele of rs4988235 is associated with Crohn's Disease (CD) in a New Zealand population. Findings: Individuals homozygous for the T allele (T/T genotype) showed a significantly increased risk of having CD as compared with those homozygous for the C allele (OR = 1.61, 95% CI = 1.03-2.51). Additionally, a significant increase in the frequency of the T allele was observed in CD patients (OR = 1.30, 95% CI = 1.05-1.61, p = 0.013), indicating that the T allele encoding lactase persistence was associated with an increased risk of CD. Conclusions: Our findings indicate that lactase persistence as evident by the presence of the T allele of rs4988235 is associated with risk of CD in this New Zealand Caucasian population

    Inflammatory biomarkers in Alzheimer's disease plasma.

    Get PDF
    INTRODUCTION: Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a "Holy Grail" of AD research and intensively sought; however, there are no well-established plasma markers. METHODS: A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed. RESULTS: Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APOε4 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71). DISCUSSION: Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation

    Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology

    Get PDF
    Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown. We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes. We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677). We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ 4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts. Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo
    corecore