55 research outputs found

    The effects of low and high glycemic index foods on exercise performance and beta-endorphin responses

    Get PDF
    Τhe aim of this study was to examine the effects of the consumption of foods of various glycemic index values on performance, β-endorphin levels and substrate (fat and carbohydrate) utilization during prolonged exercise. Eight untrained healthy males underwent, in a randomized counterbalanced design, three experimental conditions under which they received carbohydrates (1.5 gr. kg-1 of body weight) of low glycemic index (LGI), high glycemic index (HGI) or placebo. Food was administered 30 min prior to exercise. Subjects cycled for 60 min at an intensity corresponding to 65% of VO2max, which was increased to 90% of VO2max, then they cycled until exhaustion and the time to exhaustion was recorded. Blood was collected prior to food consumption, 15 min prior to exercise, 0, 20, 40, and 60 min into exercise as well as at exhaustion. Blood was analyzed for β-endorphin, glucose, insulin, and lactate. The mean time to exhaustion did not differ between the three conditions (LGI = 3.2 ± 0.9 min; HGI = 2.9 ± 0.9 min; placebo = 2.7 ± 0.7 min). There was a significant interaction in glucose and insulin response (P < 0.05) with HGI exhibiting higher values before exercise. β-endorphin increased significantly (P < 0.05) at the end of exercise without, however, a significant interaction between the three conditions. Rate of perceived exertion, heart rate, ventilation, lactate, respiratory quotient and substrate oxidation rate did not differ between the three conditions. The present study indicates that ingestion of foods of different glycemic index 30 min prior to one hour cycling exercise does not result in significant changes in exercise performance, β-endorphin levels as well as carbohydrate and fat oxidation during exercise

    Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    Get PDF
    Background: Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT) has recently been demonstrated to produce improvements to aerobic function, but it is unknown whether HIT has the capacity to improve insulin action and hence glycemic control. Methods: Sixteen young men (age: 21 ± 2 y; BMI: 23.7 ± 3.1 kg·m-2; VO2peak: 48 ± 9 ml·kg-1·min-1) performed 2 weeks of supervised HIT comprising of a total of 15 min of exercise (6 sessions; 4-6 × 30-s cycle sprints per session). Aerobic performance (250-kJ self-paced cycling time trial), and glucose, insulin and NEFA responses to a 75-g oral glucose load (oral glucose tolerance test; OGTT) were determined before and after training. Results: Following 2 weeks of HIT, the area under the plasma glucose, insulin and NEFA concentration-time curves were all reduced (12%, 37%, 26% respectively, all P < 0.001). Fasting plasma insulin and glucose concentrations remained unchanged, but there was a tendency for reduced fasting plasma NEFA concentrations post-training (pre: 350 ± 36 v post: 290 ± 39 μmol·l-1, P = 0.058). Insulin sensitivity, as measured by the Cederholm index, was improved by 23% (P < 0.01), while aerobic cycling performance improved by ∼6% (P < 0.01). Conclusion: The efficacy of a high intensity exercise protocol, involving only ∼250 kcal of work each week, to substantially improve insulin action in young sedentary subjects is remarkable. This novel time-efficient training paradigm can be used as a strategy to reduce metabolic risk factors in young and middle aged sedentary populations who otherwise would not adhere to time consuming traditional aerobic exercise regimes

    Does practicing hatha yoga satisfy recommendations for intensity of physical activity which improves and maintains health and cardiovascular fitness?

    Get PDF
    Background: Little is known about the metabolic and heart rate responses to a typical hatha yoga session. The purposes of this study were 1) to determine whether a typical yoga practice using various postures meets the current recommendations for levels of physical activity required to improve and maintain health and cardiovascular fitness; 2) to determine the reliability of metabolic costs of yoga across sessions; 3) to compare the metabolic costs of yoga practice to those of treadmill walking. Methods: In this observational study, 20 intermediate-to-advanced level yoga practitioners, age 31.4 ± 8.3 years, performed an exercise routine inside a human respiratory chamber (indirect calorimeter) while wearing heart rate monitors. The exercise routine consisted of 30 minutes of sitting, 56 minutes of beginner-level hatha yoga administered by video, and 10 minutes of treadmill walking at 3.2 and 4.8 kph each. Measures were mean oxygen consumption (VO2), heart rate (HR), percentage predicted maximal heart rate (%MHR), metabolic equivalents (METs), and energy expenditure (kcal). Seven subjects repeated the protocol so that measurement reliability could be established. Results: Mean values across the entire yoga session for VO2, HR, %MHR, METs, and energy/min were 0.6 L/kg/min; 93.2 beats/min; 49.4%; 2.5; and 3.2 kcal/min; respectively. Results of the ICCs (2,1) for mean values across the entire yoga session for kcal, METs, and %MHR were 0.979 and 0.973, and 0.865, respectively. Conclusion: Metabolic costs of yoga averaged across the entire session represent low levels of physical activity, are similar to walking on a treadmill at 3.2 kph, and do not meet recommendations for levels of physical activity for improving or maintaining health or cardiovascular fitness. Yoga practice incorporating sun salutation postures exceeding the minimum bout of 10 minutes may contribute some portion of sufficiently intense physical activity to improve cardio-respiratory fitness in unfit or sedentary individuals. The measurement of energy expenditure across yoga sessions is highly reliable

    The effects of low-calorie sweeteners on energy intake and body weight: a systematic review and meta-analyses of sustained intervention studies.

    Get PDF
    Previous meta-analyses of intervention studies have come to different conclusions about effects of consumption of low-calorie sweeteners (LCS) on body weight. The present review included 60 articles reporting 88 parallel-groups and cross-over studies ≥1 week in duration that reported either body weight (BW), BMI and/or energy intake (EI) outcomes. Studies were analysed according to whether they compared (1) LCS with sugar, (2) LCS with water or nothing, or (3) LCS capsules with placebo capsules. Results showed an effect in favour of LCS vs sugar for BW (29 parallel-groups studies, 2267 participants: BW change, -1.06 kg, 95% CI -1.50 to -0.62, I2 = 51%), BMI and EI. Effect on BW change increased with 'dose' of sugar replaced by LCS, whereas there were no differences in study outcome as a function of duration of the intervention or participant blinding. Overall, results showed no difference in effects of LCS vs water/nothing for BW (11 parallel-groups studies, 1068 participants: BW change, 0.10 kg, 95% CI -0.87 to 1.07, I2 = 82%), BMI and EI; and inconsistent effects for LCS consumed in capsules (BW change: -0.28 kg, 95% CI -0.80 to 0.25, I2 = 0%; BMI change: 0.20 kg/m2, 95% CI 0.04 to 0.36, I2 = 0%). Occurrence of adverse events was not affected by the consumption of LCS. The studies available did not permit robust analysis of effects by LCS type. In summary, outcomes were not clearly affected when the treatments differed in sweetness, nor when LCS were consumed in capsules without tasting; however, when treatments differed in energy value (LCS vs sugar), there were consistent effects in favour of LCS. The evidence from human intervention studies supports the use of LCS in weight management, constrained primarily by the amount of added sugar that LCS can displace in the diet

    Effect of short-term recombinant growth hormone administration on plasma lipoproteins in elderly adults

    No full text
    To characterize the effects of recombinant human growth hormone (rhGH) on plasma lipids and lipoproteins, rhGH was administered daily at a dose of 40 mu g.kg(-1) (Genentech) for 14 days in 7 healthy elderly male (67.4 +/- 1.9 years, 75.8 +/- 2.6 kg) adults. Six other healthy males (63.9 +/- 0.7 years, 77.8 +/- 3.8 kg) served as concurrent controls. Total plasma cholesterol (TC), triglycerides (TG), very-low-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, very-low-density lipoprotein-TG (VLDL-TG) and apolipoprotein AI and apolipoprotein B were determined after an overnight fast before and after the 14-day period of rhGH administration. Subcutaneous rhGH administration was physiologically effective, as shown by a threefold increase in insulin-like growth factor-I (from 110.8 +/- 8.2 to 355.5 +/- 41.6 ng.ml(-1); p \u3c 0.05). Plasma fasting insulin also increased from 38.0 +/- 6.5 to 129.9 +/- 43.8 mu mol.l(-1) (p \u3c 0.05) at the end of the 14 days of rhGH treatment. With respect to plasma lipid/lipoprotein changes, rhGH administration increased plasma TG levels (from 1.5 +/- 0.3 to 2.2 +/- 0.4 mmol l(-1); p \u3c 0.05) and VLDL-TG (from 1.1 +/- 0.3 to 1.8 +/- 0.4 mmol.l(-1); p \u3c 0.05), but did not change TC (from 5.0 +/- 0.4 to 5.2 +/- 0.3 mmol.l(-1)) or any other lipid/lipoprotein variables measured. No significant lipid changes were noted in the control group over the 14-day period. These data suggest that short-term rhGH treatment significantly alters plasma variables of TG profile, perhaps by altering metabolic parameters (i.e. synthesis and/or clearance rates) of VLDL metabolism

    Alterations in Osteopontin Modify Muscle Size in Females in Both Humans and Mice.

    Get PDF
    PURPOSE: An osteopontin (OPN; SPP1) gene promoter polymorphism modifies disease severity in Duchenne muscular dystrophy, and we hypothesized that it might also modify muscle phenotypes in healthy volunteers. METHODS: Gene association studies were carried out for OPN (rs28357094) in the FAMuSS cohort (n=752; age 23.7±5.7 yrs). Phenotypes studied included muscle size (MRI), strength, and response to supervised resistance training. We also studied 147 young adults that had carried out a bout of eccentric elbow exercise (age 24.0 ± 5.2yrs). Phenotypes analyzed included strength, soreness, and serum muscle enzymes. RESULTS: In the FAMuSS cohort, the G allele was associated with 17% increase in baseline upper arm muscle volume only in women (F=26.32; p=5.32 × 10), explaining 5% of population variance. In the eccentric damage cohort, weak associations of the G allele were seen in women with both baseline myoglobin, and elevated CK. Sexually dimorphic effects of OPN on muscle were also seen in OPN null mice. Five of seven muscle groups examined showed smaller size in OPN null female mice, whereas two were smaller in males. Query of OPN gene transcription after experimental muscle damage in mice showed rapid induction within 12 hrs (100-fold increase from baseline), followed by sustained high level expression through 16 days of regeneration before falling to back to baseline. CONCLUSIONS: OPN is a sexually dimorphic modifier of muscle size in normal humans and mice, and responds to muscle damage. The OPN gene is known to be estrogen responsive, and this may explain the female-specific genotype effects in adult volunteers
    corecore