156 research outputs found

    IL28B polymorphisms are markers of therapy response and are influenced by genetic ancestry in chronic hepatitis C patients from an admixed population

    Get PDF
    Background: IL28B polymorphisms are predictors of therapy response in hepatitis C virus (HCV) patients. We do not know whether they are markers of treatment response in admixed populations or not. Aims: To determine whether IL28B polymorphisms are predictors of therapy response in patients with HCV from an admixed population and are influenced by genetic ancestry. Methods: rs12979860 and rs8099917 were genotyped in 222 HCV patients treated with pegylated interferon and ribavirin. Ancestry was determined using genetic markers. Results: IL28B rs12979860 C/C was associated with sustained virological response (SVR), whereas C/T and T/T were associated with failure to therapy (P = 1.12 x 10(-5)). IL28B rs8099917 T/T was associated with SVR, and G/G and G/T were associated with nonresponse/ relapse (NR/R) (P = 8.00 x 10(-3)). Among HCV genotype 1 patients with C/C genotype, genomic ancestry did not interfere with therapy response. Among patients with rs12979860 T/T genotype, African genetic contribution was greater in the NR/R group (P = 1.51 x 10(-3)), whereas Amerindian and European genetic ancestry contribution were higher in the SVR group (P = 3.77 x 10(-3) and P = 2.16 x 10(-2) respectively). Among HCV type 1 patients with rs8099917 T/T, African genetic contribution was significantly greater in the NR/R group (P = 5.0 x 10(-3)); Amerindian and European ancestry genetic contribution were greater in the SVR group. Conclusion: IL28B rs12979860 and rs8099917 polymorphisms were predictors of therapy response in HCV genotypes 1, 2 and 3 subjects from an admixed population. Genomic ancestry did not interfere with response to therapy in patients with rs12979860 C/C, whereas it interfered in patients with C/T and T/T genotypes. Among HCV genotype 1 rs8099917 T/T patients, genomic ancestry interfered with response to therapy.Fapesb [SUS0001/2011]Fapesp [10/10.549-1

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    The germline mutational landscape of BRCA1 and BRCA2 in Brazil

    Get PDF
    The detection of germline mutations in BRCA1 and BRCA2 is essential to the formulation of clinical management strategies, and in Brazil, there is limited access to these services, mainly due to the costs/availability of genetic testing. Aiming at the identification of recurrent mutations that could be included in a low-cost mutation panel, used as a first screening approach, we compiled the testing reports of 649 probands with pathogenic/likely pathogenic variants referred to 28 public and private health care centers distributed across 11 Brazilian States. Overall, 126 and 103 distinct mutations were identified in BRCA1 and BRCA2, respectively. Twenty-six novel variants were reported from both genes, and BRCA2 showed higher mutational heterogeneity. Some recurrent mutations were reported exclusively in certain geographic regions, suggesting a founder effect. Our findings confirm that there is significant molecular heterogeneity in these genes among Brazilian carriers, while also suggesting that this heterogeneity precludes the use of screening protocols that include recurrent mutation testing only. This is the first study to show that profiles of recurrent mutations may be unique to different Brazilian regions. These data should be explored in larger regional cohorts to determine if screening with a panel of recurrent mutations would be effective.This work was supported in part by grants from Barretos Cancer Hospital (FINEP - CT-INFRA, 02/2010), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2013/24633-2 and 2103/23277-8), Fundação de Apoio à Pesquisa do Rio Grande do Norte (FAPERN), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Ministério da Saúde, the Breast Cancer Research Foundation (Avon grant #02-2013-044) and National Institute of Health/National Cancer Institute (grant #RC4 CA153828-01) for the Clinical Cancer Genomics Community Research Network. Support in part was provided by grants from Fundo de Incentivo a Pesquisa e Eventos (FIPE) from Hospital de Clínicas de Porto Alegre, by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, BioComputacional 3381/2013, Rede de Pesquisa em Genômica Populacional Humana), Secretaria da Saúde do Estado da Bahia (SESAB), Laboratório de Imunologia e Biologia Molecular (UFBA), INCT pra Controle do Câncer and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RMR and PAP are recipients of CNPq Productivity Grants, and Bárbara Alemar received a grant from the same agencyinfo:eu-repo/semantics/publishedVersio
    corecore