473 research outputs found

    Towards Forward Responsibility in BDI Agents

    Get PDF

    A Compositional Approach to Verifying Modular Robotic Systems

    Full text link
    Robotic systems used in safety-critical industrial situations often rely on modular software architectures, and increasingly include autonomous components. Verifying that these modular robotic systems behave as expected requires approaches that can cope with, and preferably take advantage of, this inherent modularity. This paper describes a compositional approach to specifying the nodes in robotic systems built using the Robotic Operating System (ROS), where each node is specified using First-Order Logic (FOL) assume-guarantee contracts that link the specification to the ROS implementation. We introduce inference rules that facilitate the composition of these node-level contracts to derive system-level properties. We also present a novel Domain-Specific Language, the ROS Contract Language, which captures a node's FOL specification and links this contract to its implementation. RCL contracts can be automatically translated, by our tool Vanda, into executable monitors; which we use to verify the contracts at runtime. We illustrate our approach through the specification and verification of an autonomous rover engaged in the remote inspection of a nuclear site, and finish with smaller examples that illustrate other useful features of our framework.Comment: Version submitted to RA

    Activation of PI3K Is Indispensable for Interleukin 7–mediated Viability, Proliferation, Glucose Use, and Growth of T Cell Acute Lymphoblastic Leukemia Cells

    Get PDF
    Interleukin (IL)-7 is essential for normal T cell development. Previously, we have shown that IL-7 increases viability and proliferation of T cell acute lymphoblastic leukemia (T-ALL) cells by up-regulating Bcl-2 and down-regulating the cyclin-dependent kinase inhibitor p27kip1. Here, we examined the signaling pathways via which IL-7 mediates these effects. We investigated mitogen-activated protein kinase (MEK)–extracellular signal-regulated kinase (Erk) and phosphatidylinositol-3-kinase (PI3K)–Akt (protein kinase B) pathways, which have active roles in T cell expansion and have been implicated in tumorigenesis. IL-7 induced activation of the MEK–Erk pathway in T-ALL cells; however, inhibition of the MEK–Erk pathway by the use of the cell-permeable inhibitor PD98059, did not affect IL-7–mediated viability or cell cycle progression of leukemic cells. IL-7 induced PI3K-dependent phosphorylation of Akt and its downstream targets GSK-3, FOXO1, and FOXO3a. PI3K activation was mandatory for IL-7–mediated Bcl-2 up-regulation, p27kip1 down-regulation, Rb hyperphosphorylation, and consequent viability and cell cycle progression of T-ALL cells. PI3K signaling was also required for cell size increase, up-regulation of CD71, expression of the glucose transporter Glut1, uptake of glucose, and maintenance of mitochondrial integrity. Our results implicate PI3K as a major effector of IL-7–induced viability, metabolic activation, growth and proliferation of T-ALL cells, and suggest that PI3K and its downstream effectors may represent molecular targets for therapeutic intervention in T-ALL

    Sepsis Induces Hematopoietic Stem Cell Exhaustion and Myelosuppression through Distinct Contributions of TRIF and MYD88

    Get PDF
    Toll-like receptor 4 (TLR4) plays a central role in host responses to bacterial infection, but the precise mechanism(s) by which its downstream signaling components coordinate the bone marrow response to sepsis is poorly understood. Using mice deficient in TLR4 downstream adapters MYD88 or TRIF, we demonstrate that both cell-autonomous and non-cell-autonomous MYD88 activation are major causes of myelosuppression during sepsis, while having a modest impact on hematopoietic stem cell (HSC) functions. In contrast, cell-intrinsic TRIF activation severely compromises HSC self-renewal without directly affecting myeloid cells. Lipopolysaccharide-induced activation of MYD88 or TRIF contributes to cell-cycle activation of HSC and induces rapid and permanent changes in transcriptional programs, as indicated by persistent downregulation of Spi1 and CebpA expression after transplantation. Thus, distinct mechanisms downstream of TLR4 signaling mediate myelosuppression and HSC exhaustion during sepsis through unique effects of MyD88 and TRIF

    The Earliest T-Precursors in the Mouse Embryo Are Susceptible to Leukemic Transformation

    Get PDF
    Acute lymphoblastic leukemia (ALL) is the most common malignancy in pediatric patients. About 10–15% of pediatric ALL belong to T-cell ALL (T-ALL), which is characterized by aggressive expansion of immature T-lymphoblasts and is categorized as high-risk leukemia. Leukemia initiating cells represent a reservoir that is responsible for the initiation and propagation of leukemia. Its perinatal origin has been suggested in some childhood acute B-lymphoblastic and myeloblastic leukemias. Therefore, we hypothesized that child T-ALL initiating cells also exist during the perinatal period. In this study, T-ALL potential of the hematopoietic precursors was found in the para-aortic splanchnopleura (P-Sp) region, but not in the extraembryonic yolk sac (YS) of the mouse embryo at embryonic day 9.5. We overexpressed the Notch intracellular domain (NICD) in the P-Sp and YS cells and transplanted them into lethally irradiated mice. NICD-overexpressing P-Sp cells rapidly developed T-ALL while YS cells failed to display leukemia propagation despite successful NICD induction. These results suggest a possible role of fetal-derived T-cell precursors as leukemia-initiating cells

    Ref-1/APE1 as Transcriptional Regulator and Novel Therapeutic Target in Pediatric T-cell Leukemia

    Get PDF
    The increasing characterization of childhood acute lymphoblastic leukemia (ALL) has led to the identification of multiple molecular targets, but have yet to translate into more effective targeted therapies, particularly for high-risk, relapsed T-cell ALL. Searching for master regulators controlling multiple signaling pathways in T-ALL, we investigated the multi-functional protein redox factor-1 (Ref-1/APE1), which acts as a signaling "node" by exerting redox regulatory control of transcription factors important in leukemia. Leukemia patients' transcriptome databases showed increased expression in T-ALL of Ref-1 and other genes of the Ref-1/SET interactome. Validation studies demonstrated that Ref-1 is expressed in high-risk leukemia T-cells, including in patient biopsies. Ref-1 redox function is active in leukemia T-cells, regulating the Ref-1 target NF-kB, and inhibited by the redox-selective Ref-1 inhibitor E3330. Ref-1 expression is not regulated by Notch signaling, but is upregulated by glucocorticoid treatment. E3330 disrupted Ref-1 redox activity in functional studies and resulted in marked inhibition of leukemia cell viability, including T-ALL lines representing different genotypes and risk groups. Potent leukemia cell inhibition was seen in primary cells from ALL patients, relapsed and glucocorticoid-resistant T-ALL cells, and cells from a murine model of Notch-induced leukemia. Ref-1 redox inhibition triggered leukemia cell apoptosis and down-regulation of survival genes regulated by Ref-1 targets. For the first time, this work identifies Ref-1 as a novel molecular effector in T-ALL and demonstrates that Ref-1 redox inhibition results in potent inhibition of leukemia T-cells, including relapsed T-ALL. These data also support E3330 as a specific Ref-1 small molecule inhibitor for leukemia

    Smooth muscle cells orchestrate the endothelial cell response to flow and injury

    Get PDF
    available in PMC 2011 May 25Background— Local modulation of vascular mammalian target of rapamycin (mTOR) signaling reduces smooth muscle cell (SMC) proliferation after endovascular interventions but may be associated with endothelial cell (EC) toxicity. The trilaminate vascular architecture juxtaposes ECs and SMCs to enable complex paracrine coregulation but shields SMCs from flow. We hypothesized that flow differentially affects mTOR signaling in ECs and SMCs and that SMCs regulate mTOR in ECs. Methods and Results— SMCs and/or ECs were exposed to coronary artery flow in a perfusion bioreactor. We demonstrated by flow cytometry, immunofluorescence, and immunoblotting that EC expression of phospho-S6 ribosomal protein (p-S6RP), a downstream target of mTOR, was doubled by flow. Conversely, S6RP in SMCs was growth factor but not flow responsive, and SMCs eliminated the flow sensitivity of ECs. Temsirolimus, a sirolimus analog, eliminated the effect of growth factor on SMCs and of flow on ECs, reducing p-S6RP below basal levels and inhibiting endothelial recovery. EC p-S6RP expression in stented porcine arteries confirmed our in vitro findings: Phosphorylation was greatest in ECs farthest from intact SMCs in metal stented arteries and altogether absent after sirolimus stent elution. Conclusions— The mTOR pathway is activated in ECs in response to luminal flow. SMCs inhibit this flow-induced stimulation of endothelial mTOR pathway. Thus, we now define a novel external stimulus regulating phosphorylation of S6RP and another level of EC-SMC crosstalk. These interactions may explain the impact of local antiproliferative delivery that targets SMC proliferation and suggest that future stents integrate design influences on flow and drug effects on their molecular targets.National Institutes of Health (U.S.) (NIH/NIGMS RO1/GM049039)National Institutes of Health (U.S.) (NIH-NIDDK (1K08DK080946))Fundación Empresas IQSBarcelona Chamber of Commerc

    Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27Kip1 degradation

    Get PDF
    Cyclin-dependent kinase inhibitors (CKIs) and Notch receptor activation have been shown to influence adult stem cells and progenitors by altering stem cell self-renewal and proliferation. Yet, no interaction between these molecular pathways has been defined. Here we show that ligand-independent and ligand-dependent activation of Notch1 induces transcription of the S phase kinase–associated protein 2 (SKP2), the F-box subunit of the ubiquitin-ligase complex SCFSKP2 that targets proteins for degradation. Up-regulation of SKP2 by Notch signaling enhances proteasome-mediated degradation of the CKIs, p27Kip1 and p21Cip1, and causes premature entry into S phase. Silencing of SKP2 by RNA interference in G1 stabilizes p27Kip1 and p21Cip1 and abolishes Notch effect on G1-S progression. Thus, SKP2 serves to link Notch1 activation with the cell cycle machinery. This novel pathway involving Notch/SKP2/CKIs connects a cell surface receptor with proximate mediators of cell cycle activity, and suggests a mechanism by which a known physiologic mediator of cell fate determination interfaces with cell cycle control
    • …
    corecore